16,573 research outputs found
Fault Tolerant Stabilizability of Multi-Hop Control Networks
A Multi-hop Control Network (MCN) consists of a plant where the communication
between sensor, actuator and computational unit is supported by a wireless
multi-hop communication network, and data flow is performed using scheduling
and routing of sensing and actuation data. We address the problem of
characterizing controllability and observability of a MCN, by means of
necessary and sufficient conditions on the plant dynamics and on the
communication scheduling and routing. We provide a methodology to design
scheduling and routing, in order to satisfy controllability and observability
of a MCN for any fault occurrence in a given set of configurations of failures.Comment: Accepted for publication; Proceedings of the 18th IFAC World
Congress, Milan, Italy, 201
Fast model predictive control for hydrogen outflow regulation in ethanol steam reformers
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the recent years, the presence of alternative power sources, such as solar panels, wind farms, hydropumps
and hydrogen-based devices, has significantly increased. The reasons of this trend are clear: contributing to
a reduction of gas emissions and dependency on fossil fuels. Hydrogen-based devices are of particular interest due
to their significant efficiency and reliability. Reforming technologies are among the most economic and efficient ways
of producing hydrogen. In this paper we consider the regulation of hydrogen outflow in an ethanol steam reformer
(ESR). In particular, a fast model predictive control approach based on a finite step response model of the process
is proposed. Simulations performed using a more realistic non-linear model show the effectiveness of the proposed
approach in driving the ESR to different operating conditions while fulfilling input and output constraints.Peer ReviewedPostprint (author's final draft
The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations
In this paper we deal with some problems concerning minimal hypersurfaces in
Carnot-Caratheodory (CC) structures. More precisely we will introduce a general
calibration method in this setting and we will study the Bernstein problem for
entire regular intrinsic minimal graphs in a meaningful and simpler class of CC
spaces, i.e. the Heisenberg group H^n. In particular we will positively answer
to the Bernstein problem in the case n=1 and we will provide counterexamples
when n>=5
The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33
Infrared Dark Clouds (IRDCs) are unique laboratories to study the initial
conditions of high-mass star and star cluster formation. We present
high-sensitivity and high-angular resolution IRAM PdBI observations of N2H+
(1-0) towards IRDC G035.39-00.33. It is found that G035.39-00.33 is a highly
complex environment, consisting of several mildly supersonic filaments
(sigma_NT/c_s ~1.5), separated in velocity by <1 km s^-1 . Where multiple
spectral components are evident, moment analysis overestimates the non-thermal
contribution to the line-width by a factor ~2. Large-scale velocity gradients
evident in previous single-dish maps may be explained by the presence of
substructure now evident in the interferometric maps. Whilst global velocity
gradients are small (<0.7 km s^-1 pc^-1), there is evidence for dynamic
processes on local scales (~1.5-2.5 km s^-1 pc^-1 ). Systematic trends in
velocity gradient are observed towards several continuum peaks. This suggests
that the kinematics are influenced by dense (and in some cases, starless)
cores. These trends are interpreted as either infalling material, with
accretion rates ~(7 \pm 4)x10^-5 M_sun yr^-1 , or expanding shells with
momentum ~24 \pm 12 M_sun km s^-1 . These observations highlight the importance
of high-sensitivity and high-spectral resolution data in disentangling the
complex kinematic and physical structure of massive star forming regions.Comment: 25 pages, 23 figures, accepted for publication in MNRA
Majorana states in prismatic core-shell nanowires
We consider core-shell nanowires with conductive shell and insulating core,
and with polygonal cross section. We investigate the implications of this
geometry on Majorana states expected in the presence of proximity-induced
superconductivity and an external magnetic field. A typical prismatic nanowire
has a hexagonal profile, but square and triangular shapes can also be obtained.
The low-energy states are localized at the corners of the cross section, i.e.
along the prism edges, and are separated by a gap from higher energy states
localized on the sides. The corner localization depends on the details of the
shell geometry, i.e. thickness, diameter, and sharpness of the corners. We
study systematically the low-energy spectrum of prismatic shells using
numerical methods and derive the topological phase diagram as a function of
magnetic field and chemical potential for triangular, square, and hexagonal
geometries. A strong corner localization enhances the stability of Majorana
modes to various perturbations, including the orbital effect of the magnetic
field, whereas a weaker localization favorizes orbital effects and reduces the
critical magnetic field. The prismatic geometry allows the Majorana zero-energy
modes to be accompanied by low-energy states, which we call pseudo Majorana,
and which converge to real Majoranas in the limit of small shell thickness. We
include the Rashba spin-orbit coupling in a phenomenological manner, assuming a
radial electric field across the shell.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.
- …
