3 research outputs found
The WD40-domain containing protein CORO2B is specifically enriched in glomerular podocytes and regulates the ventral actin cytoskeleton
Abstract Podocytes are highly specialized epithelial cells essentially required to establish and maintain the kidney filtration barrier. Due to their complex cellular architecture these cells rely on an elaborated cytoskeletal apparatus providing plasticity as well as adaptive adhesion properties to withstand significant physical filtration forces. However, our knowledge about podocyte specific components of the cytoskeletal machinery is still incomplete. Employing cross-analysis of various quantitative omics-data sets we identify the WD40-domain containing protein CORO2B as a podocyte enriched protein. Furthermore, we demonstrate the distinct localization pattern of CORO2B to the ventral actin cytoskeleton serving as a physical linkage module to cell-matrix adhesion sites. Analysis of a novel Coro2b knockout mouse revealed that CORO2B modulates stress response of podocytes in an experimental nephropathy model. Using quantitative focal adhesome proteomics we identify the recruitment of CFL1 via CORO2B to focal adhesions as an underlying mechanism. Thus, we describe CORO2B as a novel podocyte enriched protein influencing cytoskeletal plasticity and stress adaptation
Synuclein alpha accumulation mediates podocyte injury in Fabry nephropathy
AbstractCurrent therapies for Fabry disease are based on reversing intra-cellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosome dysfunction. However, their effect in the reversal of endorgan damage, like kidney injury and chronic kidney disease remains unclear. First, ultrastructural analysis of serial human kidney biopsies showed that longterm use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/CAS9-mediated α-Galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified alpha-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.</jats:p
Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy
Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9-mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy
