412 research outputs found
Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System
We obtain the exact probability of finding a
macroscopic density profile in the stationary nonequilibrium state of
an open driven diffusive system, when the size of the system .
, which plays the role of a nonequilibrium free energy, has a very
different structure from that found in the purely diffusive case. As there,
is nonlocal, but the shocks and dynamic phase transitions of the
driven system are reflected in non-convexity of , in discontinuities in
its second derivatives, and in non-Gaussian fluctuations in the steady state.Comment: LaTeX2e, RevTeX4, PiCTeX. Four pages, one PiCTeX figure included in
TeX source fil
Re-Examination of Generation of Baryon and Lepton Number Asymmetries by Heavy Particle Decay
It is shown that wave function renormalization can introduce an important
contribution to the generation of baryon and lepton number asymmetries by heavy
particle decay. These terms, omitted in previous analyses, are of the same
order of magnitude as the standard terms. A complete cancellation of leading
terms can result in some interesting cases.Comment: 12 pages, 2 Feynman graphs (not included), UPR-055
Properties of Regge Trajectories
Early Chew-Frautschi plots show that meson and baryon Regge trajectoies are
approximately linear and non-intersecting. In this paper, we reconstruct all
Regge trajectories from the most recent data. Our plots show that meson
trajectories are non-linear and intersecting. We also show that all current
meson Regge trajectories models are ruled out by data.Comment: 30 pages, latex, 18 figures, to be published in Physical Review
Screened and Unscreened Phases in Sedimenting Suspensions
A coarse-grained stochastic hydrodynamical description of velocity and
concentration fluctuations in steadily sedimenting suspensions is constructed,
and analyzed using self-consistent and renormalization group methods. We find
that there exists a dynamical, non-equilibrium phase transition from an
"unscreened" phase in which we recover the Caflisch-Luke (R.E. Caflisch and
J.H.C. Luke, Phys. Fluids 28, 759 (1985)) divergence of the velocity variance
to a "screened" phase where the velocity fluctuations have a finite correlation
length growing as where is the particle volume fraction,
in agreement with Segr\`e et. al. (Phys. Rev. Lett. 79, 2574 (1997)) and the
velocity variance is independent of system size. Detailed predictions are made
for the correlation function in both phases and at the transition.Comment: 4 pages, revtex 1 figur
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Pulsar kicks from neutrino oscillations
Neutrino oscillations can explain the observed motion of pulsars. We show
that two different models of neutrino emission from a cooling neutron star are
in good quantitative agreement and predict the same order of magnitude for the
pulsar kick velocity, consistent with the data.Comment: revtex; 4 page
Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection
We present experimental data and their theoretical interpretation for the
decay rates of temperature fluctuations in a thin layer of a fluid heated from
below and confined between parallel horizontal plates. The measurements were
made with the mean temperature of the layer corresponding to the critical
isochore of sulfur hexafluoride above but near the critical point where
fluctuations are exceptionally strong. They cover a wide range of temperature
gradients below the onset of Rayleigh-B\'enard convection, and span wave
numbers on both sides of the critical value for this onset. The decay rates
were determined from experimental shadowgraph images of the fluctuations at
several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis.
As the onset of convection is approached, the data reveal the critical
slowing-down associated with the bifurcation. Theoretical predictions for the
decay rates as a function of the wave number and temperature gradient are
presented and compared with the experimental data. Quantitative agreement is
obtained if allowance is made for some uncertainty in the small spacing between
the plates, and when an empirical estimate is employed for the influence of
symmetric deviations from the Oberbeck-Boussinesq approximation which are to be
expected in a fluid with its density at the mean temperature located on the
critical isochore.Comment: 13 pages, 10 figures, 52 reference
Structure Factors and Their Distributions in Driven Two-Species Models
We study spatial correlations and structure factors in a three-state
stochastic lattice gas, consisting of holes and two oppositely ``charged''
species of particles, subject to an ``electric'' field at zero total charge.
The dynamics consists of two nearest-neighbor exchange processes, occuring on
different times scales, namely, particle-hole and particle-particle exchanges.
Using both, Langevin equations and Monte Carlo simulations, we study the
steady-state structure factors and correlation functions in the disordered
phase, where density profiles are homogeneous. In contrast to equilibrium
systems, the average structure factors here show a discontinuity singularity at
the origin. The associated spatial correlation functions exhibit intricate
crossovers between exponential decays and power laws of different kinds. The
full probability distributions of the structure factors are universal
asymmetric exponential distributions.Comment: RevTex, 18 pages, 4 postscript figures included, mistaken half-empty
page correcte
Glasses in hard spheres with short-range attraction
We report a detailed experimental study of the structure and dynamics of
glassy states in hard spheres with short-range attraction. The system is a
suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear
polymer which induces a depletion attraction between the particles. Observation
of crystallization reveals a re-entrant glass transition. Static light
scattering shows a continuous change in the static structure factors upon
increasing attraction. Dynamic light scattering results, which cover 11 orders
of magnitude in time, are consistent with the existence of two distinct kinds
of glasses, those dominated by inter-particle repulsion and caging, and those
dominated by attraction. Samples close to the `A3 point' predicted by mode
coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure
Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study
We use lattice Boltzmann simulations, in conjunction with Ewald summation
methods, to investigate the role of hydrodynamic interactions in colloidal
suspensions of dipolar particles, such as ferrofluids. Our work addresses
volume fractions of up to 0.20 and dimensionless dipolar interaction
parameters of up to 8. We compare quantitatively with Brownian
dynamics simulations, in which many-body hydrodynamic interactions are absent.
Monte Carlo data are also used to check the accuracy of static properties
measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic
interactions slow down both the long-time and the short-time decays of the
intermediate scattering function , for wavevectors close to the peak of
the static structure factor , by a factor of roughly two. The long-time
slowing is diminished at high interaction strengths whereas the short-time
slowing (quantified via the hydrodynamic factor ) is less affected by the
dipolar interactions, despite their strong effect on the pair distribution
function arising from cluster formation. Cluster formation is also studied in
transient data following a quench from ; hydrodynamic interactions
slow the formation rate, again by a factor of roughly two
- …
