983 research outputs found
Metformin as a Therapeutic Target in Endometrial Cancers.
Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer
The Issues and Challenges of Assessing Media Literacy Education
In the media literacy literature, the challenges associated with assessment have, to a great extent, been ignored. The purpose of this mixed methods study was therefore to explore the views of media literacy scholars and professionals on assessment challenges through qualitative interviews (n = 10) with the intent of using this information to develop a quantitative survey to validate and extend the qualitative findings with a larger sample of media literacy professionals and scholars from around the world (n = 133). The findings offer an overview of the assessment challenges encountered by these participants
A Combination of Metabolomics and Machine Learning Results in the Identification of a New Cyst Nematode Hatching Factor
Potato Cyst Nematodes (PCNs) are an economically important pest for potato growers. A crucial event in the life cycle of the nematode is hatching, after which the juvenile will move toward the host root and infect it. The hatching of PCNs is induced by known and unknown compounds in the root exudates of host plant species, called hatching factors (HFs, induce hatching independently), such as solanoeclepin A (solA), or hatching stimulants (HSs, enhance hatching activity of HFs). Unraveling the identity of unknown HSs and HFs and their natural variation is important for the selection of cultivars that produce low amounts of HFs and HSs, thus contributing to more sustainable agriculture. In this study, we used a new approach aimed at the identification of new HFs and HSs for PCNs in potato. Hereto, root exudates of a series of different potato cultivars were analyzed for their PCN hatch-inducing activity and their solA content. The exudates were also analyzed using untargeted metabolomics, and subsequently the data were integrated using machine learning, specifically random forest feature selection, and Pearson’s correlation testing. As expected, solA highly correlates with hatching. Furthermore, this resulted in the discovery of a number of metabolite features present in the root exudate that correlate with hatching and solA content, and one of these is a compound of m/z 526.18 that predicts hatching even better than solA with both data methods. This compound’s involvement in hatch stimulation was confirmed by the fractionation of three representative root exudates and hatching assays with the resulting fractions. Moreover, the compound shares mass fragmentation similarity with solA, and we therefore assume it has a similar structure. With this work, we show that potato likely produces a solA analogue, and we contribute to unraveling the hatch-inducing cocktail exuded by plant roots
Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: implications for upscaling studies on small lakes
Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0–3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6–5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account
Larotrectinib efficacy and safety in TRK fusion cancer: An expanded clinical dataset showing consistency in an age and tumor agnostic approach
Background: TRK fusion cancer results from gene fusions involving NTRK1, NTRK2 or NTRK3. Larotrectinib, the first selective TRK inhibitor, has demonstrated an overall response rate (ORR) of 75% with a favorable safety profile in the first 55 consecutively enrolled adult and pediatric patients with TRK fusion cancer (Drilon et al.,NEJM2018). Here, we report the clinical activity of larotrectinib in an additional 35 TRK fusion cancer patients and provide updated follow-up of the primary analysis set (PAS) of 55 patients as of 19thFeb 2018. Methods: Patients with TRK fusion cancer detected by molecular profiling from 3 larotrectinib clinical trials (NCT02122913, NCT02637687, and NCT02576431) were eligible.Larotrectinib was administered until disease progression, withdrawal, or unacceptable toxicity. Disease status was assessed using RECIST version 1.1. Results: As of Feb 2018, by independent review, 6 PRs in the PAS deepened to CRs. The median duration of response (DoR) and progression-free survival in the PAS had still not been reached, with 12.9 months median follow-up. At 1 year, 69% of responses were ongoing, 58% of patients remained progression-free and 90% of patients were alive. An additional 19 children and 25 adults (age range, 0.1-78 years) with TRK fusion cancer were enrolled after the PAS, and included cancers of the salivary gland, thyroid, lung, colon, melanoma, sarcoma, GIST and congenital mesoblastic nephroma. In 35 evaluable patients, the ORR by investigator assessment was 74% (5 CR, 21 PR, 6 SD, 2 PD, 1 not determined). In these patients, with median follow-up of 5.5 months, median DoR had not yet been reached, and 88% of responses were ongoing at 6 months, consistent with the PAS. Adverse events (AEs) were predominantly grade 1, with dizziness, increased AST/ALT, fatigue, nausea and constipation the most common AEs reported in ≥ 10% of patients. No AE of grade 3 or 4 related to larotrectinib occurred in more than 5% of patients. Conclusions: TRK fusions are detected in a broad range of tumor types. Larotrectinib is an effective age- and tumor-agnostic treatment for TRK fusion cancer with a positive safety profile. Screening patients for NTRK gene fusions in solid- and brain tumors should be actively considered
- …