160 research outputs found

    Annual Assessment of Physico Chemical Parameters of The Untreated and Treated Sewage Water Fed Ponds of CHRIST (Deemed to Be University) Campuses, Bengaluru, Karnataka, India

    Get PDF
    Annual assessment and comparative investigation on six sewage water bodies, among six of the study areas, three were of untreated sewage water bodies and the rest three were of treated sewage water bodies namely MU ( Main campus Untreated sewage water), MT(main campus Treated water), BU (Bannerghatta campus untreated sewage water), BT(Bannerghatta campus Treated Sewage water), KU(Kengeri campus untreated sewage water) and KT(Kengeri campus Treated sewage water) were conducted to assess the water characteristics and the effect of water treatment process. Water characteristics were presented in terms of physico-chemical parameters.Twenty physico-chemical parameters of sewage water, were examined on a monthly basis for the time period of November 2019-November 2020. During the analysis, waters of treated sewage samples showed a larger difference and more suitable for daily usage when compared to untreated sewage water samples which were heavily loaded with pollution. As per Two Way ANOVA there was highly significant variation in physico-chemical parameters between the untreated and treated sewage water samples(P<0.01)

    Comparative Study of Various Metals in the Sewage Samples of Three Major Drains of the City-Patna, Bihar, India

    Get PDF
    Untreated sewage is a major water pollutant and widely used for irrigation in the agricultural fields of district Patna, Bihar, India. When sewage, containing heavy metals, irrigated into the agricultural fields, it enters into the human food chain by the process of bioaccumulation and biomagnification. In view of the above fact, the present study was conducted to determine the level of metals in the sewage samples of three major drains namely Mandiri, Rajapur and Pahari situated in the city Patna, Bihar, India, during March 2010 to February 2011. In comparison with other two drains, the metals were found in higher amount in the sewage of Pahari drain throughout the year

    Anomalies at finite density and chiral fermions

    Get PDF
    Using perturbation theory in the Euclidean (imaginary time) formalism as well as the non-perturbative Fujikawa method, we verify that the chiral anomaly equation remains unaffected in the presence of nonzero chemical potential, μ\mu. We extend our considerations to fermions with exact chiral symmetry on the lattice and discuss the consequences for the recent Bloch-Wettig proposal for the Dirac operator at finite chemical potential. We propose a new simpler method of incorporating μ\mu and compare it with the Bloch-Wettig idea.Comment: 12 pages, 3 figures,some typos corrected, a better proof for the \mu independence of anomaly is given in section IIB, v4: the published versio

    Critical review on arsenic: Its occurrence, contamination and remediation from water and soil

    Get PDF
    With the increasing pollution in today’s world, importance is being given to solve a problem and do it in a sustainable, eco-friendly manner. Arsenic is a class-1 carcinogen and also causes many other side effects to humans, plants and animals. The utilization of arsenic as wood preservatives, pesticides, or its historical overuse by some military units for rice killing operations has led to the increase in the toxic effects of arsenic like its carcinogenicity, decreased immune response etc. Although conventional methods like coagulation, lime softening, adsorption, membrane technology are effective, they have their disadvantages like additional waste generation, causing increased pollution and are expensive. The better alternative is phytoremediation. Appropriate plants like Brassica juncea, Hydrilla verticilata, Pteris vittata L., Vallisneria natans,  can be chosen based on the method of the remediation like phytoextraction, phytostabilization and phytofiltration or phytovoltalization. This review provides the list of a few plants which can be likely chosen for the purpose of both water and soil remediation. Advancements are occurring in bioremediation studies with the development of transgenic plants like transgenic tobacco, transgenic Arabidopsis thaliana for better phytoremediation.  Understanding the mechanism employed by the plant for its uptake/detoxification can aid in the enhancement of the process of remediation with the external supply of phosphorus. Along with this, the proper and safe disposal of plants is crucial for the remediation process. In addition, awareness of this solution to the general public is to be made for its effectiveness

    Phosphorus: A Boon or Curse for the Environment?

    Get PDF
    Phosphorus, a limiting nutrient of biosphere, exists as dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), particulate inorganic phosphorus (PIP) and particulate organic phosphorus (POP) in water of soil as well as ponds, lakes, etc. The only available phosphorus for plants are DIP, while the other forms need to be converted to DIP by the decomposing microorganisms of the soil. The heavy metals (such as arsenic and chromium), which are the menace of both terrestrial and aquatic environment, are taken up by the plants and animals causing toxicity at physiological level. However, the metal (Cr and As) toxicity can be mitigated competitively by phosphorus, since the latter is a structural analogue. Since, phosphorus is an essential nutrient, plants prefer it over Cr or As. At the same time, if excess of phosphorus is applied in the soil in the form of fertilisers, it gets discharged into the water bodies (ponds, lakes, etc.) through agricultural runoff, causing eutrophication followed by harming the health of the water bodies. This can be further mitigated by employing the phenomenon of luxury uptake by the aquatic plants such as Pistia stratiotes

    Limnological studies on Different Ponds of Bihar, India: a Review

    Get PDF
    Pure water is essential for human survival. The availability of good quality water is an indispensable feature for preventing diseases and improving the quality of life. So, it is necessary to know about the different physicochemical parameters of water such as, temperature, electrical conductivity (EC), total suspended solid (TSS), total dissolved substance (TDS),turbidity, pH, alkalinity, hardness, chloride, sulphate, nitrate, fluoride, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrate and phosphate. Also Biological parameters such as planktons were examined. Results of the study indicated that the pond water of Bihar is slightly contaminated

    Enhancing the biodegradability and environmental impact of microplastics utilizing Eisenia fetida earthworms with treated low-density polyethylene for sustainable plastic management

    Get PDF
    Low-density polyethylene (LDPE) is widely used in food packaging and agricultural mulching, but its disposal generates macro, meso and microplastics that infiltrate the food chain and carry harmful substances. The present study aimed to improve remediation strategies for soils contaminated with LDPE and enhance the survivability of Eisenia fetida.  The study dissolved LDPE in trichloroethylene and treated it with starch, hydrogen peroxide, nitric acid and acetic acid, initiating thermo-oxidative reactions. The treatment decreased LDPE's crystallinity index from 48.48% to 44.06% (single treatment), 44.06% to 40.02% (double treatment) and 40.02% to 32.98% (triple treatment), achieving a 15.5% reduction in crystallinity. LDPE microplastics with 40.02% crystallinity showed lower mortality rates in Eisenia fetida earthworms compared to those with 44.06% and 32.98% crystallinity and untreated LDPE. When introduced to E. fetida, microbiota in the earthworm casts included unidentified species from Pseudomonas and Zoopagomycota, known polyethylene degraders. Microbial analysis of treated LDPE microplastics showed changes in gut microbiota, including potential degraders from Aeromonas and Malassezia restricta.  XRD (X-ray diffraction techniques analyses) and FTIR(Fourier Transform Infrared Spectroscopy) analyses provided insights into distinct LDPE degradation patterns, identifying hydroxyl and carboxylic groups as functional groups. The study also investigated the ability of altered microflora with treated microplastics to degrade LDPE, favouring decreased earthworm mortality rates. The crystallinity index of treated polyethylene further reduced from 40.02% to 23.58% after 21 days of exposure to E. fetida. This research advances the understanding of oxidised plastics' ecological impacts and will help to develop environmentally sustainable and biodegradable LDPE.

    A primary study on the degradation of low-density polyethylene treated with select oxidizing agents and starch

    Get PDF
    Polyethylene has become an integral part of our contemporary lives. The neoteric versatile nature of polyethylene is used in constructing various applications. Out of the plastic waste discarded, 60% of the plastic waste enters landfills. The polyethylene discarded in the soil and water on exposure to the environment forms macroplastics (>2.5 cm), mesoplastics (5 mm - 2.5 cm) and microplastics (<5 mm). Microplastics in the water and soil are observed to have lethal and ecotoxicological effects on aquatic and terrestrial organisms. They enter the food chain and permeate into the food that one eats. In order to address this impending concern, the present study aimed to treat plastics to form a degradable, safe and earthy material. The dissolved polyethylene was treated with starch and was made to react with oxidizing agents such as hydrogen peroxide, nitric acid and acetic acid to lower its inert ability to withstand its degradation. The effect of starch and oxidizing agents on dissolved low density polyethylene was subsequently analysed. The analysis of treated polyethylene showed a decrease in its crystallinity percentage by 6.19 and an increase in its functional groups on reaction with solvent trichloroethylene made to react with starch and oxidizing agents. In the present research, tests were conducted to obtain the various methods that can be utilized to reverse the inert ability of polyethylene. The prevailing recycling model that uses antioxidation techniques is counterproductive since it was found that such techniques appeared to make the polyethylene more resistant to further degradation. In this study, the polyethylene was dissolved in the solvents, such as xylene and trichloroethylene, to make the polyethylene more susceptible to reactants and hence a viable model for treating polyethylene

    Towards QCD thermodynamics using exact chiral symmetry on lattice

    Get PDF
    The thermodynamics of massless ideal gas of overlap quarks has been investigated numerically for both zero and nonzero baryon chemical potential μ\mu. While the parameter M has been shown to be irrelevant in the continuum limit, it is shown numerically that the continuum limit can be reached with relatively coarser lattices for certain range of M. Numerical limitation of the existing method of introduction of chemical potential in the overlap formalism is discussed. We have also studied the energy density of free domain wall fermions in the absence of μ\mu and estimated the extent of lattice in the fifth dimension L5L_5 for which the overlap results are recovered. Interestingly, this value of L5L_5 is also minimum for the same range of M found in the overlap case.Comment: 5 pages, 4 figures, to appear in the proceedings of the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008

    Generation of entangled channels for perfect teleportation channels using multi-electron quantum dots

    Full text link
    In this work we have proposed a scheme for generating NN qubit entangled states which can teleport an unknown state perfectly. By switching on the exchange interaction (JJ) between the qubits one can get the desired states periodically. A multi electron quantum dot can be a possible realization for generating such NN qubit states with high fidelity. In the limit of NN \to \infty, there exists a unique time t=1Jcos1(1/8)t=\frac{1}{J}\cos^{-1}(-1/8) where the Hamiltonian dynamics gives the NN qubit state that can assist perfect teleportation. We have also discussed the effect of the nuclear spin environment on the fidelity of teleportation for a general NN qubit entangled channel.Comment: 6 pages, 3 figure
    corecore