2,107 research outputs found

    High-frequency dielectric spectroscopy of batio3 core - silica shell nanocomposites: Problem of interdiffusion

    Get PDF
    Three types of BaTiO3 core - amorphous nano-shell composite ceramics were processed from the same core-shell powder by standard sintering, spark-plasma sintering and two-step sintering techniques and characterized by XRD, HRSEM and broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz including the THz and IR range. The samples differed by porosity and by the amount of interdiffusion from the cores to shells, in correlation with their increasing porosity. The dielectric spectra were also calculated using suitable models based on effective medium approximation. The measurements revealed a strong dielectric dispersion below the THz range, which cannot be explained by the modeling, and whose strength was in correlation with the degree of interdiffusion. We assigned it to an effect of the interdiffusion layers, giving rise to a strong interfacial polarization. It appears that the high-frequency dielectric spectroscopy is an extremely sensitive tool for detection of any gradient layers and sample inhomogeneities even in dielectric materials with negligible conductivity

    In situ visualization of Ni-Nb bulk metallic glasses phase transition

    Full text link
    We report the results of the Ni-based bulk metallic glass structural evolution and crystallization behavior in situ investigation. The X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam diffraction (NBD), differential scanning calorimetry (DSC), radial distribution function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques were applied to analyze the structure and electronic properties of Ni63.5Nb36.5 glasses before and after crystallization. It was proved that partial surface crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the full sample crystallization. According to our STM measurements the primary crystallization is originally starting with the Ni3Nb phase formation. It was shown that surface crystallization drastically differs from the bulk crystallization due to the possible surface reconstruction. The mechanism of Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to the local metastable (3x3)-Ni(111) surface phase formation. The possibility of different surface nano-structures development by the annealing of the originally glassy alloy in ultra high vacuum at the temperature lower, than the crystallization temperature was shown. The increase of mean square surface roughness parameter Rq while moving from glassy to fully crystallized state can be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested, and the obtained values (7.64 A, 8.08 A) are in good agreement with STM measurements data (8 A-10 A)

    Infrared and THz studies of polar phonons and improper magnetodielectric effect in multiferroic BFO3 ceramics

    Full text link
    BFO3 ceramics were investigated by means of infrared reflectivity and time domain THz transmission spectroscopy at temperatures 20 - 950 K, and the magnetodielectric effect was studied at 10 - 300 K, with the magnetic field up to 9 T. Below 175 K, the sum of polar phonon contributions into the permittivity corresponds to the value of measured permittivity below 1 MHz. At higher temperatures, a giant low-frequency permittivity was observed, obviously due to the enhanced conductivity and possible Maxwell-Wagner contribution. Above 200 K the observed magnetodielectric effect is caused essentially through the combination of magnetoresistance and the Maxwell-Wagner effect, as recently predicted by Catalan (Appl. Phys. Lett. 88, 102902 (2006)). Since the magnetodielectric effect does not occur due to a coupling of polarization and magnetization as expected in magnetoferroelectrics, we call it improper magnetodielectric effect. Below 175 K the magnetodielectric effect is by several orders of magnitude lower due to the decreased conductivity. Several phonons exhibit gradual softening with increasing temperature, which explains the previously observed high-frequency permittivity increase on heating. The observed non-complete phonon softening seems to be the consequence of the first-order nature of the ferroelectric transition.Comment: subm. to PRB. revised version according to referees' report

    Hertz-to-infrared electrodynamics of single-crystalline barium-lead hexaferrite Ba1-xPbxFe12O19

    Get PDF
    Broadband electrodynamic response of single-crystalline lead-substituted barium hexaferrite Ba1-xPbxFe12O19 is studied at temperatures from 5 to 300 K in the range from 1 Hz to 240 THz that includes radio, sub-terahertz, terahertz and infrared frequencies and altogether spans over 14 frequency decades. Discovered phenomena include relaxational radio-frequency dynamics of domains and domain walls, temperature-unstable terahertz excitations connected with electric dipoles induced by off-center displacements in the ab-plane of the lead ions, narrow terahertz excitations associated with electronic transitions between the fine-structure components of the Fe2+ground state, dielectric gigahertz resonances presumably of magneto-electric origin and polar lattice vibrations

    Hybridization and interference effects for localized superconducting states in strong magnetic field

    Full text link
    Within the Ginzburg-Landau model we study the critical field and temperature enhancement for crossing superconducting channels formed either along the sample edges or domain walls in thin-film magnetically coupled superconducting - ferromagnetic bilayers. The corresponding Cooper pair wave function can be viewed as a hybridization of two order parameter (OP) modes propagating along the boundaries and/or domain walls. Different momenta of hybridized OP modes result in the formation of vortex chains outgoing from the crossing point of these channels. Near this crossing point the wave functions of the modes merge giving rise to the increase in the critical temperature for a localized superconducting state. The origin of this critical temperature enhancement caused by the wave function squeezing is illustrated for a limiting case of approaching parallel boundaries and/or domain walls. Using both the variational method and numerical simulations we have studied the critical temperature dependence and OP structure vs the applied magnetic field and the angle between the crossing channels.Comment: 12 pages, 13 figure

    Low-temperature scanning tunneling microscopy of ring-like surface electronic structures around Co islands on InAs(110) surfaces

    Full text link
    We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal clusters deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are visible in spectroscopic images within a certain range of negative tunneling bias voltages due to the presence of a negative differential conductance in the current-voltage dependence. A theoretical model is introduced, which takes into account non-equilibrium effects in the small tunneling junction area. In the framework of this model the appearance of the ring-like features is explained in terms of interference effects between electrons tunneling directly and indirectly (via a Co island) between the tip and the InAs surface.Comment: 8 pages, 4 figure
    corecore