355 research outputs found

    Potential reuse of coal mine wastewater: a case study in Quang Ninh, Vietnam

    Get PDF
    In Vietnam, the local regulation and environmental impact are driving coal mining industry to reuse the large volume of wastewater it produces. The co-research project between National University of Civil Engineering (NUCE) and Mitsubishi Rayon Corporation (MRC) has started early 2013 to evaluate if the MRC membranes could be a great tool for treatment of coal mine wastewater for reuse. The experiment were conducted at one of coal mine plants in Quang Ninh province, Vietnam. It was found that pre-treatment of coal mine wastewater was an important part in the treatment process. The MRC membrane was a significant barrier to maintain stable and high quality effluent to meet the requirement of Vietnam national technical standard for domestic use

    Analyzing power in nucleon-deuteron scattering and three-nucleon forces

    Get PDF
    Three-nucleon forces have been considered to be one possibility to resolve the well known discrepancy between experimental values and theoretical calculations of the nucleon analyzing power in low energy nucleon-deuteron scattering. In this paper, we investigate possible effects of two-pion exchange three-nucleon forces on the analyzing power and the differential cross section. We found that the reason for different effects on the analyzing power by different three-nucleon forces found in previous calculations is related to the existence of the contact term. Effects of some variations of two-pion exchange three-nucleon forces are investigated. Also, an expression for the measure of the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys. Rev.

    Covariant equations for the three-body bound state

    Get PDF
    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including the Wigner rotations and rho-spin decomposition of the off-shell particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative rho-spin states of the off-shell particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st

    Momentum and Coordinate Space Three-nucleon Potentials

    Full text link
    In this paper we give explicit formulae in momentum and coordinate space for the three-nucleon potentials due to ρ\rho and π\pi meson exchange, derived from off-mass-shell meson-nucleon scattering amplitudes which are constrained by the symmetries of QCD and by the experimental data. Those potentials have already been applied to nuclear matter calculations. Here we display additional terms which appear to be the most important for nuclear structure. The potentials are decomposed in a way that separates the contributions of different physical mechanisms involved in the meson-nucleon amplitudes. The same type of decomposition is presented for the π−π\pi - \pi TM force: the Δ\Delta, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon request

    Reaction mechanism and characteristics of T_{20} in d + ^3He backward elastic scattering at intermediate energies

    Get PDF
    For backward elastic scattering of deuterons by ^3He, cross sections \sigma and tensor analyzing power T_{20} are measured at E_d=140-270 MeV. The data are analyzed by the PWIA and by the general formula which includes virtual excitations of other channels, with the assumption of the proton transfer from ^3He to the deuteron. Using ^3He wave functions calculated by the Faddeev equation, the PWIA describes global features of the experimental data, while the virtual excitation effects are important for quantitative fits to the T_{20} data. Theoretical predictions on T_{20}, K_y^y (polarization transfer coefficient) and C_{yy} (spin correlation coefficient) are provided up to GeV energies.Comment: REVTEX+epsfig, 17 pages including 6 eps figs, to be published in Phys. Rev.

    Relativistic Corrections to the Triton Binding Energy

    Full text link
    The influence of relativity on the triton binding energy is investigated. The relativistic three-dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is used. Relativistic (non-separable) one-boson-exchange potentials (constructed in the BbS framework) are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that relativistic effects increase the triton binding energy by about 0.2 MeV. Including charge-dependence (besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potential, respectively.Comment: 25 pages of text (latex), 1 figure (not included, available upon request

    Neutron-3H and Proton-3He Zero Energy Scattering

    Get PDF
    The Kohn variational principle and the (correlated) Hyperspherical Harmonics technique are applied to study the n-3H and p-3He scattering at zero energy. Predictions for the singlet and triplet scattering lengths are obtained for non-relativistic nuclear Hamiltonians including two- and three-body potentials. The calculated n-3H total cross section agrees well with the measured value, while some small discrepancy is found for the coherent scattering length. For the p-3He channel, the calculated scattering lengths are in reasonable agreement with the values extrapolated from the measurements made above 1 MeV.Comment: 13 pages, REVTEX, 1 figur

    The pd <--> pi+ t reaction around the Delta resonance

    Full text link
    The pd pi+ t process has been calculated in the energy region around the Delta-resonance with elementary production/absorption mechanisms involving one and two nucleons. The isobar degrees of freedom have been explicitly included in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free parameters have been employed in the analysis since all the parameters have been fixed in previous studies on the simpler pp pi+ d process. The treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of the reaction, with continuum calculations for the initial p-d state and accurate solutions of the three-nucleon bound-state equation. The integral cross-section was found to be quite sensitive to the NN interaction employed while the angular dependence showed less sensitivity. Approximately a 4% effect was found for the one-body mechanism, for the three-nucleon dynamics in the p-d channel, and for the inclusion of a large, possibly converged, number of three-body partial states, indicating that these different aspects are of comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure
    • 

    corecore