185 research outputs found
Thin film dielectric microstrip kinetic inductance detectors
Microwave Kinetic Inductance Detectors, or MKIDs, are a type of low
temperature detector that exhibit intrinsic frequency domain multiplexing at
microwave frequencies. We present the first theory and measurements on a MKID
based on a microstrip transmission line resonator. A complete characterization
of the dielectric loss and noise properties of these resonators is performed,
and agrees well with the derived theory. A competitive noise equivalent power
of 5 W Hz at 1 Hz has been demonstrated. The
resonators exhibit the highest quality factors known in a microstrip resonator
with a deposited thin film dielectric.Comment: 10 pages, 4 figures, APL accepte
High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier
We describe the high fidelity dispersive measurement of a superconducting
qubit using a microwave amplifier based on the Superconducting Low-inductance
Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB
and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art
HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared
to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an
input saturation power corresponding to 700 photons in the readout cavity.Comment: 10 pages, 3 figure
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
Deterministic entanglement of photons in two superconducting microwave resonators
Quantum entanglement, one of the defining features of quantum mechanics, has
been demonstrated in a variety of nonlinear spin-like systems. Quantum
entanglement in linear systems has proven significantly more challenging, as
the intrinsic energy level degeneracy associated with linearity makes quantum
control more difficult. Here we demonstrate the quantum entanglement of photon
states in two independent linear microwave resonators, creating N-photon NOON
states as a benchmark demonstration. We use a superconducting quantum circuit
that includes Josephson qubits to control and measure the two resonators, and
we completely characterize the entangled states with bipartite Wigner
tomography. These results demonstrate a significant advance in the quantum
control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia
Fluctuations From Edge Defects in Superconducting Resonators
Superconducting resonators, used in astronomy and quantum computation, couple
strongly to microscopic two-level defects. We monitor the microwave response of
superconducting resonators and observe fluctuations in dissipation and
resonance frequency. We present a unified model where the observed dissipative
and dispersive effects can be explained as originating from a bath of
fluctuating two-level systems. From these measurements, we quantify the number
and distribution of the defects
Reduced phase error through optimized control of a superconducting qubit
Minimizing phase and other errors in experimental quantum gates allows higher
fidelity quantum processing. To quantify and correct for phase errors in
particular, we have developed a new experimental metrology --- amplified phase
error (APE) pulses --- that amplifies and helps identify phase errors in
general multi-level qubit architectures. In order to correct for both phase and
amplitude errors specific to virtual transitions and leakage outside of the
qubit manifold, we implement "half derivative" an experimental simplification
of derivative reduction by adiabatic gate (DRAG) control theory. The phase
errors are lowered by about a factor of five using this method to per gate, and can be tuned to zero. Leakage outside the qubit
manifold, to the qubit state, is also reduced to for
faster gates.Comment: 4 pages, 4 figures with 2 page supplementa
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
Simulating weak localization using superconducting quantum circuits
Understanding complex quantum matter presents a central challenge in
condensed matter physics. The difficulty lies in the exponential scaling of the
Hilbert space with the system size, making solutions intractable for both
analytical and conventional numerical methods. As originally envisioned by
Richard Feynman, this class of problems can be tackled using controllable
quantum simulators. Despite many efforts, building an quantum emulator capable
of solving generic quantum problems remains an outstanding challenge, as this
involves controlling a large number of quantum elements. Here, employing a
multi-element superconducting quantum circuit and manipulating a single
microwave photon, we demonstrate that we can simulate the weak localization
phenomenon observed in mesoscopic systems. By engineering the control sequence
in our emulator circuit, we are also able to reproduce the well-known
temperature dependence of weak localization. Furthermore, we can use our
circuit to continuously tune the level of disorder, a parameter that is not
readily accessible in mesoscopic systems. By demonstrating a high level of
control and complexity, our experiment shows the potential for superconducting
quantum circuits to realize scalable quantum simulators.Comment: 9 pages, including supplemen
Loss and decoherence due to stray infrared light in superconducting quantum circuits
We find that stray infrared light from the 4 K stage in a cryostat can cause
significant loss in superconducting resonators and qubits. For devices shielded
in only a metal box, we measured resonators with quality factors Q = 10^5 and
qubits with energy relaxation times T_1=120 ns, consistent with a stray
light-induced quasiparticle density of 170-230 \mu m^{-3}. By adding a second
black shield at the sample temperature, we found about an order of magnitude
improvement in performance and no sensitivity to the 4 K radiation. We also
tested various shielding methods, implying a lower limit of Q = 10^8 due to
stray light in the light-tight configuration.Comment: 4 pages, 4 figure
- …
