17,643 research outputs found
Generally Covariant Conservative Energy-Momentum for Gravitational Anyons
We obtain a generally covariant conservation law of energy-momentum for
gravitational anyons by the general displacement transform. The energy-momentum
currents have also superpotentials and are therefore identically conserved. It
is shown that for Deser's solution and Clement's solution, the energy vanishes.
The reasonableness of the definition of energy-momentum may be confirmed by the
solution for pure Einstein gravity which is a limit of vanishing Chern-Simons
coulping of gravitational anyons.Comment: 12 pages, Latex, no figure
Topology of Knotted Optical Vortices
Optical vortices as topological objects exist ubiquitously in nature. In this
paper, by making use of the -mapping topological current theory, we
investigate the topology in the closed and knotted optical vortices. The
topological inner structure of the optical vortices are obtained, and the
linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P.
R. China
Generalized Stable Multivariate Distribution and Anisotropic Dilations
After having closely re-examined the notion of a L\'evy's stable vector, it
is shown that the notion of a stable multivariate distribution is more general
than previously defined. Indeed, a more intrinsic vector definition is obtained
with the help of non isotropic dilations and a related notion of generalized
scale. In this framework, the components of a stable vector may not only have
distinct Levy's stability indices 's, but the latter may depend on its
norm. Indeed, we demonstrate that the Levy's stability index of a vector rather
correspond to a linear application than to a scalar, and we show that the
former should satisfy a simple spectral property
Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"
In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van
Otterlo, and Zimanyi criticized the phenomenological time-dependent
Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for
superconducting wires. They claimed that they developed a "microscopic" model,
made qualitative improvement on my overestimate of the tunnelling barrier due
to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's
result on EM barrier is expected in my paper; ii), their work is also
phenomenological; iii), their renormalization scheme is fundamentally flawed;
iv), they underestimated the barrier for ultrathin wires; v), their comparison
with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected
from my work. They underestimated tunneling barrier for ultrathin wires by
one order of magnitude in the exponen
Single electron control in n-type semiconductor quantum dots using non-Abelian holonomies generated by spin orbit coupling
We propose that n-type semiconductor quantum dots with the Rashba and
Dresselhaus spin orbit interactions may be used for single electron
manipulation through adiabatic transformations between degenerate states. All
the energy levels are discrete in quantum dots and possess a double degeneracy
due to time reversal symmetryin the presence of the Rashba and/or Dresselhaus
spin orbit coupling terms. We find that the presence of double degeneracy does
not necessarily give rise to a finite non-Abelian (matrix) Berry phase. We show
that a distorted two-dimensional harmonic potential may give rise to
non-Abelian Berry phases. The presence of the non-Abelian Berry phase may be
tested experimentally by measuring the optical dipole transitions.Comment: accepted in Phys. Rev.
Energy-momentum for Randall-Sundrum models
We investigate the conservation law of energy-momentum for Randall-Sundrum
models by the general displacement transform. The energy-momentum current has a
superpotential and are therefore identically conserved. It is shown that for
Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is
localized near the Planck brane. The energy density is .Comment: 13 pages, no figures, v4: introduction and new conclusion added, v5:
11 pages, title changed and references added, accepted by Mod. Phys. Lett.
A heralded quantum gate between remote quantum memories
We demonstrate a probabilistic entangling quantum gate between two distant
trapped ytterbium ions. The gate is implemented between the hyperfine "clock"
state atomic qubits and mediated by the interference of two emitted photons
carrying frequency encoded qubits. Heralded by the coincidence detection of
these two photons, the gate has an average fidelity of 90+-2%. This entangling
gate together with single qubit operations is sufficient to generate large
entangled cluster states for scalable quantum computing
Thermalization and temperature distribution in a driven ion chain
We study thermalization and non-equilibrium dynamics in a dissipative quantum
many-body system -- a chain of ions with two points of the chain driven by
thermal bath under different temperature. Instead of a simple linear
temperature gradient as one expects from the classical heat diffusion process,
the temperature distribution in the ion chain shows surprisingly rich patterns,
which depend on the ion coupling rate to the bath, the location of the driven
ions, and the dissipation rates of the other ions in the chain. Through
simulation of the temperature evolution, we show that these unusual temperature
distribution patterns in the ion chain can be quantitatively tested in
experiments within a realistic time scale.Comment: 5 pages, 5 figure
Self-dual Vortices in the Abelian Chern-Simons Model with Two Complex Scalar Fields
Making use of -mapping topological current method, we discuss the
self-dual vortices in the Abelian Chern-Simons model with two complex scalar
fields. For each scalar field, an exact nontrivial equation with a topological
term which is missing in many references is derived analytically. The general
angular momentum is obtained. The magnetic flux which relates the two scalar
fields is calculated. Furthermore, we investigate the vortex evolution
processes, and find that because of the present of the vortex molecule, these
evolution processes is more complicated than the vortex evolution processes in
the corresponding single scalar field model.Comment: 9 pages, no figure
Scalable Quantum Networks based on Few-Qubit Registers
We describe and analyze a hybrid approach to scalable quantum computation
based on an optically connected network of few-qubit quantum registers. We show
that probabilistically connected five-qubit quantum registers suffice for
deterministic, fault-tolerant quantum computation even when state preparation,
measurement, and entanglement generation all have substantial errors. We
discuss requirements for achieving fault-tolerant operation for two specific
implementations of our approach.Comment: 4 pages, 3 figures (new figures 1 and 3
- …