204 research outputs found
Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history
The three dimensional microstructural network of elastin, collagen and cells in Achilles tendons
Similar to most biological tissues, the biomechanical and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology of and the microstructural relationship among the elastic fibres, collagen and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical functions and microstructural arrangement in Achilles tendons. Using confocal and Second Harmonic Generation (SHG) imaging techniques, this study examined the 3-dimensional microstructure of the collagen, elastin and cells in the mid-portion of hydrated rabbit Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images
A comparative analysis of national media responses to the OECD survey of adult skills: policy making from the global to the local?
OECD’s Programme of International Assessment of Adult Competencies (PIAAC) is put forward as a landmark development in the lifelong monitoring and international comparison of education. PIAAC’s first round of the Survey of Adult Skills compared performance in Literacy, Numeracy and Problem Solving in Technology-Rich Environments across 24 countries. However, the translation of any OECD agenda into national policies is mediated by many actors including the media. This paper examines and compares how national media of Japan, England and France reported on the PIAAC results of their countries, and the extent to which these reports mirror key messages from the OECD’s Country Notes. It begins to trace how the OECD PIAAC agendas materialise into national policies. Although their role in this initial period was limited, we argue the roles of the media together with other policy actors must be monitored as they interact to shape possibilities for sustainable adult education policies
The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs
How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation
Economics and the Political Economy of Adult Education
This chapter provides a critical overview of the contribution of economics to research and policy on adult education. It discusses three distinct political economy perspectives and links these to the shifting policy agenda related to adult education at the OECD over the last five decades. This is done to reveal the link between different political economy perspectives and the implications for analytical as well as political perspectives when approaching the study and policy of adult education. Some implications and challenges for research on adult education are discussed
Socio-demographic and practice-oriented factors related to proficiency in problem solving: a lifelong learning perspective
This article explores the relative importance of different socio-demographic and practice-oriented factors that are related to proficiency in problem solving in technology-rich environments (PSTREs) and by extension may be related to complex problem solving (CPS). The empirical analysis focuses on the proficiency measurements of PSTRE made available by the Programme for the International Assessment of Adult Competencies, which is relevant for gaining insight on some of the factors related to CPS. The purpose was to examine the relationship between the broad information processing experience that individuals gather in different contexts over the lifespan, and the chances to develop problem-solving skills that adults receive in different socio-demographic profiles. Results reveal that socio-demographic factors such as age, education and immigration status as well as practice-oriented factors such as ICT use and reading practice at and outside work are strongly related to proficiency
The Maunder minimum (1645-1715) was indeed a grand minimum: a reassessment of multiple datasets
Aims.
Although the time of the Maunder minimum (1645–1715) is widely known as a period of extremely low solar activity, it is still being debated whether solar activity during that period might have been moderate or even higher than the current solar cycle (number 24). We have revisited all existing evidence and datasets, both direct and indirect, to assess the level of solar activity during the Maunder minimum.
Methods.
We discuss the East Asian naked-eye sunspot observations, the telescopic solar observations, the fraction of sunspot active days, the latitudinal extent of sunspot positions, auroral sightings at high latitudes, cosmogenic radionuclide data as well as solar eclipse observations for that period. We also consider peculiar features of the Sun (very strong hemispheric asymmetry of the sunspot location, unusual differential rotation and the lack of the K-corona) that imply a special mode of solar activity during the Maunder minimum.
Results.
The level of solar activity during the Maunder minimum is reassessed on the basis of all available datasets.
Conclusions.
We conclude that solar activity was indeed at an exceptionally low level during the Maunder minimum. Although the exact level is still unclear, it was definitely lower than during the Dalton minimum of around 1800 and significantly below that of the current solar cycle #24. Claims of a moderate-to-high level of solar activity during the Maunder minimum are rejected with a high confidence level
- …