2,049 research outputs found

    Weak spin-orbit interactions induce exponentially flat mini-bands in magnetic metals without inversion symmetry

    Full text link
    In metallic magnets like MnSi the interplay of two very weak spin-orbit coupling effects can strongly modify the Fermi surface. In the absence of inversion symmetry even a very small Dzyaloshinsky-Moriya interaction of strength delta<<1 distorts a ferromagnetic state into a chiral helix with a long pitch of order 1/delta. We show that additional small spin-orbit coupling terms of order delta in the band structure lead to the formation of exponentially flat minibands with a bandwidth of order exp(-1/sqrt(delta)) parallel to the direction of the helix. These flat minibands cover a rather broad belt of width sqrt(delta) on the Fermi surface where electron motion parallel to the helix practically stops. We argue that these peculiar band-structure effects lead to pronounced features in the anomalous skin effect.Comment: 7 pages, minor corrections, references adde

    Wilson chains are not thermal reservoirs

    Full text link
    Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order Delta E when a finite amount of energy Delta E is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.Comment: 2 page

    CLIMATE CHANGE, AGRICULTURE AND POVERTY

    Get PDF
    Even though much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. In this article, we focus on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at the forefront of climate change mitigation efforts in developing countries. In so doing, we offer some important insights that may help shape future policies as well as ongoing research in this area.Agricultural and Food Policy, Environmental Economics and Policy, Food Security and Poverty, Resource /Energy Economics and Policy,

    Sign change of the Grueneisen parameter and magnetocaloric effect near quantum critical points

    Full text link
    We consider the Grueneisen parameter and the magnetocaloric effect near a pressure and magnetic field controlled quantum critical point, respectively. Generically, the Grueneisen parameter (and the thermal expansion) displays a characteristic sign change close to the quantum-critical point signaling an accumulation of entropy. If the quantum critical point is the endpoint of a line of finite temperature phase transitions, T_c \propto (p_c-p)^Psi, then we obtain for p<p_c, (1) a characteristic increase \Gamma \sim T^{-1/(\nu z)} of the Grueneisen parameter Gamma for T>T_c, (2) a sign change in the Ginzburg regime of the classical transition, (3) possibly a peak at T_c, (4) a second increase Gamma \sim -T^{-1/(nu z)} below T_c for systems above the upper critical dimension and (5) a saturation of Gamma \propto 1/(p_c-p). We argue that due to the characteristic divergencies and sign changes the thermal expansion, the Grueneisen parameter and magnetocaloric effect are excellent tools to detect and identify putative quantum critical points.Comment: 10 pages, 7 figures; final version, only minor change

    Large thermomagnetic effects in weakly disordered Heisenberg chains

    Full text link
    The interplay of different scattering mechanisms can lead to novel effects in transport. We show theoretically that the interplay of weak impurity and Umklapp scattering in spin-1/2 chains leads to a pronounced dip in the magnetic field dependence of the thermal conductivity κ\kappa at a magnetic field BTB \sim T. In sufficiently clean samples, the reduction of the magnetic contribution to heat transport can easily become larger than 50% and the effect is predicted to exist even in samples with a large exchange coupling, J >> B, where the field-induced magnetization is small. Qualitatively, our theory might explain dips at BTB \sim T observed in recent heat transport measurements on copper pyrazine dinitrate, but a fully quantitative description is not possible within our model.Comment: 5 pages, 2 figure

    String order and adiabatic continuity of Haldane chains and band insulators

    Full text link
    The ground state of spin-1 Haldane chains is characterized by the so-called string order. We show that the same hidden order is also present in ordinary one-dimensional band insulators. We construct a family of Hamiltonians which connects adiabatically band insulators to two topologically non-equivalent spin models, the Haldane chain and the antiferromagnetic spin-1/2 ladder. We observe that the localized spin-1/2 edge-state characteristic of spin-1 chains is smoothly connected to a surface-bound state of band insulators and its emergence is not related to any bulk phase transition. Furthermore, we show that the string order is absent in any dimensions higher than one.Comment: 6 pages, 7 figures. Appendix about charge string orders added. Version as publishe

    Zero temperature optical conductivity of ultra-clean Fermi liquids and superconductors

    Full text link
    We calculate the low-frequency optical conductivity sigma(w) of clean metals and superconductors at zero temperature neglecting the effects of impurities and phonons. In general, the frequency and temperature dependences of sigma have very little in common. For small Fermi surfaces in three dimensions (but not in 2D) we find for example that Re sigma(w>0)=const. for low w which corresponds to a scattering rate Gamma proportional to w^2 even in the absence of Umklapp scattering when there is no T^2 contribution to Gamma. In the main part of the paper we discuss in detail the optical conductivity of d-wave superconductors in 2D where Re sigma(w>0) \propto w^4 for the smallest frequencies and the Umklapp processes typically set in smoothly above a finite threshold w_0 smaller than twice the maximal gap Delta. In cases where the nodes are located at (pi/2, pi/2), such that direct Umklapp scattering among them is possible, one obtains Re sigma(w) \propto w^2.Comment: 7 pages, 3 figure

    Current induced rotational torques in the skyrmion lattice phase of chiral magnets

    Full text link
    In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise to an efficient coupling of macroscopic magnetic domains to spin currents. We analyze the resulting spin-transfer effects, and, in particular, focus on the current induced rotation of the magnetic texture by an angle. Such a rotation can arise from macroscopic temperature gradients in the system as has recently been shown experimentally and theoretically. Here we investigate an alternative mechanism, where small distortions of the skyrmion lattice and the transfer of angular momentum to the underlying atomic lattice play the key role. We employ the Landau-Lifshitz-Gilbert equation and adapt the Thiele method to derive an effective equation of motion for the rotational degree of freedom. We discuss the dependence of the rotation angle on the orientation of the applied magnetic field and the distance to the phase transition.Comment: 11 pages, 6 figures; minor changes, published versio

    Giant mass and anomalous mobility of particles in fermionic systems

    Full text link
    We calculate the mobility of a heavy particle coupled to a Fermi sea within a non-perturbative approach valid at all temperatures. The interplay of particle recoil and of strong coupling effects, leading to the orthogonality catastrophe for an infinitely heavy particle, is carefully taken into account. We find two novel types of strong coupling effects: a new low energy scale TT^{\star} and a giant mass renormalization in the case of either near-resonant scattering or a large transport cross section σ\sigma. The mobility is shown to obey two different power laws below and above TT^{\star}. For σλf2\sigma\gg\lambda_f^2, where λf\lambda_f is the Fermi wave length, an exponentially large effective mass suppresses the mobility.Comment: 4 pages, 4 figure
    corecore