81 research outputs found
Single-spin magnetometry with multi-pulse sensing sequences
We experimentally demonstrate single-spin magnetometry with multi-pulse
sensing sequences. The use of multi-pulse sequences can greatly increase the
sensing time per measurement shot, resulting in enhanced ac magnetic field
sensitivity. We theoretically derive and experimentally verify the optimal
number of sensing cycles, for which the effects of decoherence and increased
sensing time are balanced. We perform these experiments for oscillating
magnetic fields with fixed phase as well as for fields with random phase.
Finally, by varying the phase and frequency of the ac magnetic field, we
measure the full frequency-filtering characteristics of different multi-pulse
schemes and discuss their use in magnetometry applications.Comment: 4 pages, 4 figures. Final versio
Heralded state preparation in a superconducting qubit
We demonstrate high-fidelity, quantum nondemolition, single-shot readout of a
superconducting flux qubit in which the pointer state distributions can be
resolved to below one part in 1000. In the weak excitation regime, continuous
measurement permits the use of heralding to ensure initialization to a fiducial
state, such as the ground state. This procedure boosts readout fidelity to
93.9% by suppressing errors due to spurious thermal population. Furthermore,
heralding potentially enables a simple, fast qubit reset protocol without
changing the system parameters to induce Purcell relaxation.Comment: 5 pages, 5 figure
Partial-measurement back-action and non-classical weak values in a superconducting circuit
We realize indirect partial measurement of a transmon qubit in circuit
quantum electrodynamics by interaction with an ancilla qubit and projective
ancilla measurement with a dedicated readout resonator. Accurate control of the
interaction and ancilla measurement basis allows tailoring the measurement
strength and operator. The tradeoff between measurement strength and qubit
back-action is characterized through the distortion of a qubit Rabi oscillation
imposed by ancilla measurement in different bases. Combining partial and
projective qubit measurements, we provide the solid-state demonstration of the
correspondence between a non-classical weak value and the violation of a
Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures
Initialization by measurement of a two-qubit superconducting circuit
We demonstrate initialization by joint measurement of two transmon qubits in
3D circuit quantum electrodynamics. Homodyne detection of cavity transmission
is enhanced by Josephson parametric amplification to discriminate the two-qubit
ground state from single-qubit excitations non-destructively and with 98.1%
fidelity. Measurement and postselection of a steady-state mixture with 4.7%
residual excitation per qubit achieve 98.8% fidelity to the ground state, thus
outperforming passive initialization.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures, 1
table
Bootstrap tomography of high-precision pulses for quantum control
Long-time dynamical decoupling and quantum control of qubits require
high-precision control pulses. Full characterization (quantum tomography) of
imperfect pulses presents a bootstrap problem: tomography requires initial
states of a qubit which can not be prepared without imperfect pulses. We
present a protocol for pulse error analysis, specifically tailored for a wide
range of the single solid-state electron spins. Using a single electron spin of
a nitrogen-vacancy (NV) center in diamond, we experimentally verify the
correctness of the protocol, and demonstrate its usefulness for quantum control
tasks
Reversing quantum trajectories with analog feedback
We demonstrate the active suppression of transmon qubit dephasing induced by
dispersive measurement, using parametric amplification and analog feedback. By
real-time processing of the homodyne record, the feedback controller reverts
the stochastic quantum phase kick imparted by the measurement on the qubit. The
feedback operation matches a model of quantum trajectories with measurement
efficiency , consistent with the result obtained by
postselection. We overcome the bandwidth limitations of the amplification chain
by numerically optimizing the signal processing in the feedback loop and
provide a theoretical model explaining the optimization result.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures
Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond
We investigate spin-dependent decay and intersystem crossing in the optical
cycle of single negatively-charged nitrogen-vacancy (NV) centres in diamond. We
use spin control and pulsed optical excitation to extract both the
spin-resolved lifetimes of the excited states and the degree of
optically-induced spin polarization. By optically exciting the centre with a
series of picosecond pulses, we determine the spin-flip probabilities per
optical cycle, as well as the spin-dependent probability for intersystem
crossing. This information, together with the indepedently measured decay rate
of singlet population provides a full description of spin dynamics in the
optical cycle of NV centres. The temperature dependence of the singlet
population decay rate provides information on the number of singlet states
involved in the optical cycle.Comment: 11 pages, 5 figure
Stabilizing entanglement autonomously between two superconducting qubits
Quantum error-correction codes would protect an arbitrary state of a
multi-qubit register against decoherence-induced errors, but their
implementation is an outstanding challenge for the development of large-scale
quantum computers. A first step is to stabilize a non-equilibrium state of a
simple quantum system such as a qubit or a cavity mode in the presence of
decoherence. Several groups have recently accomplished this goal using
measurement-based feedback schemes. A next step is to prepare and stabilize a
state of a composite system. Here we demonstrate the stabilization of an
entangled Bell state of a quantum register of two superconducting qubits for an
arbitrary time. Our result is achieved by an autonomous feedback scheme which
combines continuous drives along with a specifically engineered coupling
between the two-qubit register and a dissipative reservoir. Similar autonomous
feedback techniques have recently been used for qubit reset and the
stabilization of a single qubit state, as well as for creating and stabilizing
states of multipartite quantum systems. Unlike conventional, measurement-based
schemes, an autonomous approach counter-intuitively uses engineered dissipation
to fight decoherence, obviating the need for a complicated external feedback
loop to correct errors, simplifying implementation. Instead the feedback loop
is built into the Hamiltonian such that the steady state of the system in the
presence of drives and dissipation is a Bell state, an essential building-block
state for quantum information processing. Such autonomous schemes, broadly
applicable to a variety of physical systems as demonstrated by a concurrent
publication with trapped ion qubits, will be an essential tool for the
implementation of quantum-error correction.Comment: 39 pages, 7 figure
- …
