35 research outputs found

    Digital Twins for Industry 4.0 in the 6G Era

    Full text link
    Having the Fifth Generation (5G) mobile communication system recently rolled out in many countries, the wireless community is now setting its eyes on the next era of Sixth Generation (6G). Inheriting from 5G its focus on industrial use cases, 6G is envisaged to become the infrastructural backbone of future intelligent industry. Especially, a combination of 6G and the emerging technologies of Digital Twins (DT) will give impetus to the next evolution of Industry 4.0 (I4.0) systems. This article provides a survey in the research area of 6G-empowered industrial DT system. With a novel vision of 6G industrial DT ecosystem, this survey discusses the ambitions and potential applications of industrial DT in the 6G era, identifying the emerging challenges as well as the key enabling technologies. The introduced ecosystem is supposed to bridge the gaps between humans, machines, and the data infrastructure, and therewith enable numerous novel application scenarios.Comment: Accepted for publication in IEEE Open Journal of Vehicular Technolog

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Architecture landscape

    Get PDF
    The network architecture evolution journey will carry on in the years ahead, driving a large scale adoption of 5th Generation (5G) and 5G-Advanced use cases with significantly decreased deployment and operational costs, and enabling new and innovative use-case-driven solutions towards 6th Generation (6G) with higher economic and societal values. The goal of this chapter, thus, is to present the envisioned societal impact, use cases and the End-to-End (E2E) 6G architecture. The E2E 6G architecture includes summarization of the various technical enablers as well as the system and functional views of the architecture
    corecore