2,472 research outputs found
Explosion models for thermonuclear supernovae resulting from different ignition conditions
We have explored in three dimensions the fate of a massive white dwarf as a
function of different initial locations of carbon ignition, with the aid of a
SPH code. The calculated models cover a variety of possibilities ranging from
the simultaneous ignition of the central volume of the star to the off-center
ignition in multiple scattered spots. In the former case, there are discussed
the possibility of a transition to a detonation when the mean density of the
nuclear flame decreases below 2x10**7 g cm**-3, and its consequences. In the
last case, the dependence of the results on the number of initial igniting
spots and the chance of some of these models to evolve to the pulsating delayed
detonation scenario are also outlined.Comment: 5 pages, 1 figure, proceedings of IAU Colloquium 192, 'Supernovae (10
years of SN1993J)', 22-26 April 2003, Valencia, Spai
A Conceptual Framework for B2B Electronic Contracting
Electronic contracting aims at improving existing business relationship paradigms and at enabling new forms of contractual relationships. To successfully realize these objectives, an integral understanding of the contracting field must be established. In this paper, we propose a conceptual framework for business-to-business contracting support. The framework provides a complete view over the contracting field. It allows positioning research efforts in the domain, analysing them, placing their goals into perspective, and overseeing future research topics and issues. It is the basis for drawing conclusions about basic requirements to contracting systems
Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel
We calculate detailed NLTE synthetic spectra of a Pulsating Reverse
Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae.
While the hydro models are calculated in 3-D, the spectra use an angle averaged
hydro model and thus some of the 3-D details are lost, but the overall average
should be a good representation of the average observed spectra. We study the
model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days
after maximum light. At maximum the defining Si II feature is prominent, but
there is also a prominent C II feature, not usually observed in normal SNe Ia
near maximum. We compare to the early spectrum of SN 2006D which did show a
prominent C II feature, but the fit to the observations is not compelling.
Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With
the broad spectral coverage it is clear that the iron-peak elements on the
outside of the model push too much flux to the red and thus the particular PRD
realizations studied would be intrinsically far redder than observed SNe Ia. We
briefly discuss variations that could improve future PRD models.Comment: 15 pages, 4 figures, submitted to Ap
Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs
We present photoluminescence studies of the molecular neutral
biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum
dot pairs. We tune either the hole or the electron levels of the two dots into
tunneling resonances. The spectra are described well within a few-level,
few-particle molecular model. Their properties can be modified broadly by an
electric field and by structural design, which makes them highly attractive for
controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments,
published
Attention bias dynamics and symptom severity during and following CBT for social anxiety disorder
Objective: Threat-related attention bias figures prominently in contemporary accounts of the maintenance of anxiety disorders, yet longitudinal intervention research relating attention bias to anxiety symptom severity is limited. Capitalizing on recent advances in the conceptualization and measurement of attention bias, we aimed to examine the relation between attention bias, indexed using trial-level bias scores (TLBSs) to quantify temporal dynamics reflecting dysregulation of attentional processing of threat (as opposed to aggregated mean bias scores) and social anxiety symptom severity over the course of cognitive-behavioral therapy (CBT) and 1-month follow-up. Method: Adults with social anxiety disorder (N = 39) assigned to either yohimbine-or placebo-augmented CBT completed measures of attention bias and social anxiety symptom severity weekly throughout CBT (5 sessions) and at 1-week and 1-month posttreatment. Results: TLBSs of attention bias temporal dynamics showed stronger psychometric properties than mean aggregated scores and were highly interrelated, in line with within-subject temporal variability fluctuating in time between attentional overengagement and strategic avoidance from threat. Attention bias toward threat and temporal variability in attention bias (i.e., attentional dysregulation), but not attention bias away from threat, significantly reduced over the course of CBT. Cross-lag analyses revealed no evidence of a causal relation between reductions in attentional dysregulation leading to symptom severity reduction, or vice versa. Observed relations did not vary as a function of time. Conclusions: We found no evidence for attentional dysregulation as a causal mechanism for symptom reduction in CBT for social anxiety disorders. Implications for future research are discussed
Electrically tunable g-factors in quantum dot molecular spin states
We present a magneto-photoluminescence study of individual vertically stacked
InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied
electric field tunes the relative energies of the two dots, we observe a strong
resonant increase or decrease in the g-factors of different spin states that
have molecular wavefunctions distributed over both quantum dots. We propose a
phenomenological model for the change in g-factor based on resonant changes in
the amplitude of the wavefunction in the barrier due to the formation of
bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects
response to referee comment
Tea: A High-level Language and Runtime System for Automating Statistical Analysis
Though statistical analyses are centered on research questions and
hypotheses, current statistical analysis tools are not. Users must first
translate their hypotheses into specific statistical tests and then perform API
calls with functions and parameters. To do so accurately requires that users
have statistical expertise. To lower this barrier to valid, replicable
statistical analysis, we introduce Tea, a high-level declarative language and
runtime system. In Tea, users express their study design, any parametric
assumptions, and their hypotheses. Tea compiles these high-level specifications
into a constraint satisfaction problem that determines the set of valid
statistical tests, and then executes them to test the hypothesis. We evaluate
Tea using a suite of statistical analyses drawn from popular tutorials. We show
that Tea generally matches the choices of experts while automatically switching
to non-parametric tests when parametric assumptions are not met. We simulate
the effect of mistakes made by non-expert users and show that Tea automatically
avoids both false negatives and false positives that could be produced by the
application of incorrect statistical tests.Comment: 11 page
Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario
We develop an improved method for tracking the nuclear flame during the
deflagration phase of a Type Ia supernova, and apply it to study the variation
in outcomes expected from the gravitationally confined detonation (GCD)
paradigm. A simplified 3-stage burning model and a non-static ash state are
integrated with an artificially thickened advection-diffusion-reaction (ADR)
flame front in order to provide an accurate but highly efficient representation
of the energy release and electron capture in and after the unresolvable flame.
We demonstrate that both our ADR and energy release methods do not generate
significant acoustic noise, as has been a problem with previous ADR-based
schemes. We proceed to model aspects of the deflagration, particularly the role
of buoyancy of the hot ash, and find that our methods are reasonably
well-behaved with respect to numerical resolution. We show that if a detonation
occurs in material swept up by the material ejected by the first rising bubble
but gravitationally confined to the white dwarf (WD) surface (the GCD
paradigm), the density structure of the WD at detonation is systematically
correlated with the distance of the deflagration ignition point from the center
of the star. Coupled to a suitably stochastic ignition process, this
correlation may provide a plausible explanation for the variety of nickel
masses seen in Type Ia Supernovae.Comment: 14 pages, 10 figures, accepted to the Astrophysical Journa
Optical control of coherent interactions between quantum dot electron spins
Coherent interactions between spins in quantum dots are a key requirement for
quantum gates. We have performed pump-probe experiments in which pulsed lasers
emitting at different photon energies manipulate two distinct subsets of
electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin
dynamics are monitored through their precession about an external magnetic
field. These measurements demonstrate spin precession phase shifts and
modulations of the magnitude of one subset of oriented spins after optical
orientation of the second subset. The observations are consistent with results
from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure
Spin Fine Structure in Optically Excited Quantum Dot Molecules
The interaction between spins in coupled quantum dots is revealed in distinct
fine structure patterns in the measured optical spectra of InAs/GaAs double
quantum dot molecules containing zero, one, or two excess holes. The fine
structure is explained well in terms of a uniquely molecular interplay of spin
exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is
critical for converting quantum dot molecule tunneling into a means of
optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published
- …
