478 research outputs found

    The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K

    Get PDF
    We report rate coefficients for the relaxation of OH(v = 1) and OD(v = 1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10–12 cm3 molecule–1 s–1) can be expressed as: for OH(v = 1) + H2O between 263 and 390 K: k = (2.4 ± 0.9) exp((460 ± 115)/T); for OH(v = 1) + D2O between 256 and 371 K: k = (0.49 ± 0.16) exp((610 ± 90)/T); for OD(v = 1) + H2O between 251 and 371 K: k = (0.92 ± 0.16) exp((485 ± 48)/T); for OD(v = 1) + D2O between 253 and 366 K: k = (2.57 ± 0.09) exp((342 ± 10)/T). Rate coefficients at (297 ± 1 K) are also reported for the relaxation of OH(v = 2) by D2O and the relaxation of OD(v = 2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O–HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O–HO, D2O–HO, H2O–DO and D2O–DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates—assuming that relaxation proceeds via the hydrogen-bonded complexes

    Generating Target Graph Couplings for QAOA from Native Quantum Hardware Couplings

    Full text link
    We present methods for constructing any target coupling graph using limited global controls in an Ising-like quantum spin system. Our approach is motivated by implementing the quantum approximate optimization algorithm (QAOA) on trapped ion quantum hardware to find approximate solutions to Max-Cut. We present a mathematical description of the problem and provide approximately optimal algorithmic constructions which generate arbitrary unweighted coupling graphs with nn nodes in O(n)O(n) global control pulses and weighted graphs with mm edges in O(m)O(m) pulses. These upper bounds are not tight in general, and we formulate a mixed-integer program to solve the graph coupling problem to optimality. We perform numeric experiments on small graphs with n8n \le 8 show that optimal pulse sequences, which use fewer operations, can be found using mixed-integer programs

    Investigation into the security and privacy of iOS VPN applications

    Get PDF
    Due to the increasing number of recommendations for people to use Virtual Private Networks (VPNs) to protect their privacy, more application developers are creating VPN applications and publishing them on the Apple App Store and Google Play Store. In this ‘gold rush’, applications are being developed quickly and, in turn, not being developed with security in mind.This paper investigated a selection of VPN applications available on the Apple App Store (for iOS devices) and tested the applications for security and privacy issues. This includes testing for any traffic being transmitted over plain HTTP, DNS leakage and transmission of personally identifiable information (such as phone number, International Mobile Equipment Identity (IMEI), email address, MAC address) and evaluating the security of the tunneling protocol used by the VPN.The testing methodology involved installing VPN applications on a test device, simulating network traffic for a pre-defined period of time and capturing the traffic. This allows for all traffic to be analysed to check for anything being sent without encryption. Other issues that often cause de-anonymization with VPN applications such as DNS leakage were also considered.The research found several common security issues with VPN applications tested, with a large majority of applications still using HTTP and not HTTPS for transmitting certain data. A large majority of the VPN applications failed to route additional user data (such as DNS queries) through the VPN tunnel. Furthermore, just fifteen of the tested applications were found to have correctly implemented the best-recommended tunneling protocol for user security.Outside of the regular testing criteria, other security anomalies were observed with specific applications, which included outdated servers with known vulnerabilities, applications giving themselves the ability to perform HTTPS interception and questionable privacy policies. From the documented vulnerabilities, this research proposes a set of recommendations for developers to consider when developing VPN applications

    Simulation of the Performance of the IISc Chemical Kinetics Shock Tube

    Get PDF
    This report presents the results of an investigation of the performance of the Chemical Kinetics Shock tube at the Indian Institute of Science. The one-dimensional Lagrangian code L1d of Jacobs (1998) has been used to simulate the tube at several operating conditions. The conditions have different shock tube filling pressures, resulting in different shock speeds and different tube lengths, resulting in different dwell times. The simulations have been performed both with and without viscous effects simulated in the tubes. At the lowest shock tube filling pressure condition, the shock tube operates in an overtailored mode and it is undertailored at the higher filling pressure conditions. The results show that viscous effects, which lead to attenuation of the primary shock and heat loss from the test gas to the tube walls, result in an increasing p5 pressure during the test time. The viscous effects are more dominant at the condition with the lowest filling pressure (highest primary shock speed). A simulation run for 50 ms after diaphragm rupture or the configuration with a long driver tube shows that the test gas is periodically re-compressed by reflections of waves along the driver and shock tubes. The recompressions become sequentially weaker and thus the test gas temperature and pressure are never raised to as high levels as for the primary compression

    Microstructure and Mechanical properties of Borated Stainless Steel (304B) GTA and SMA welds

    Get PDF
    Borated stainless steels are used in nuclear power plants due to their high capacity to absorb thermal neutrons.Borated Stainless Steels are being used to control neutron criticality in reactors as control rods, shieldingmaterial, spent fuel storage racks and transportation casks. In the present study, an attempt has been madeto investigate the microstructural and mechanical properties of the borated stainless steel welds made on10 mm thick plates, using SMAW and GTAW welding processes. Microstructural investigations revealed thatthe fusion zone in GTAW exhibited dendritic structure with eutectic constituents in interdendritic regions. GTAwelds failed in the partially melted zones formed (PMZ) immediately adjacent to the fusion zone, while theSMA welds failed in the base metal because of the high heat input used per pass in GTAW process resulting inlarger PMZ. The heat input in GTAW was very high compared to the SMAW while both the welds exhibited highjoint efficiencies, SMA welds were found to be superior. Impact testing revealed that welds made using SMAexhibited significantly higher toughness as the filler does not contain boron. It has been concluded that highefficiency welded joints can be made on 304B plates using both the processes

    MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    Get PDF
    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands

    Reduction of seafood processing wastewater using technologies enhanced by swim–bed technology

    Get PDF
    The increasing growth of the seafood processing industries considerably requires more industrial process activities and water consumption. It is estimated that approximately 10–40 m3 of wastewater is generated from those industries for processing one-tonne of raw materials. Due to limitations and regulations in natural resources utilization, a suitable and systematic wastewater treatment plant is very important to meet rigorous discharge standards. As a result of food waste biodegradability, the biological treatment and some extent of swim-bed technology, including a novel acryl-fibre (biofilm) material might be used effectively to meet the effluent discharge criteria. This chapter aims to develop understanding on current problems and production of the seafood wastewater regarding treatment efficiency and methods of treatment

    2D MR Spectroscopy Combined with Prior-Knowledge Fitting Is Sensitive to HCV-Associated Cerebral Metabolic Abnormalities

    Get PDF
    There is an evidence of neurocognitive dysfunction even in the absence of advanced liver disease in chronic hepatitis C virus (HCV) infection. Brain metabolism has been investigated non-invasively using one-dimensional (1D) in vivo Magnetic Resonance Spectroscopy (MRS) over three decades. Even though highly concentrated cerebral metabolites (N-acetylaspartate, creatine, choline, glutamate/glutamine, myo-inositol) have been detected using MRS, other metabolites at low concentrations (~1–3 mM or less) including glutathione, aspartate and GABA are quite difficult to observe using 1D MRS. In order to resolve overlapping resonances from a number of metabolites, a remedy is to add a second spectral dimension to the existing 1D MRS. Localized two-dimensional correlated spectroscopy (L-COSY) has been developed over the last decade to enhance the spectral dispersion by using the second spectral dimension. We have evaluated this L-COSY technique in the frontal white/gray matter regions of 14 HCV+ (mean age of 56.2 years) and 14 HCV− (mean age of 46.6 years) subjects. Our preliminary results showed significantly increased myo-inositol and glutathione in the HCV+ compared to the HCV− subjects. Hence, glutathione and myo-inositol should be considered along with other metabolites as important markers of inflammation

    Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Get PDF
    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans
    corecore