788 research outputs found

    Extra dimensions, orthopositronium decay, and stellar cooling

    Full text link
    In a class of extra dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision orthopositronium decay experiments. We point out that in this framework a photon in plasma should be metastable. We consider the astrophysical consequences of this observation, in particular, what it implies for the plasmon decay rate in globular cluster stars and for the core-collapse supernova cooling rate. The resulting bounds on the model parameter exceed the possible reach of orthopositronium experiments by many orders of magnitude.Comment: 13 pages, no figure

    Red giant bound on the axion-electron coupling reexamined

    Full text link
    If axions or other low-mass pseudoscalars couple to electrons (``fine structure constant'' αa\alpha_a) they are emitted from red giant stars by the Compton process γ+ee+a\gamma+e\to e+a and by bremsstrahlung e+(Z,A)(Z,A)+e+ae+(Z,A)\to (Z,A)+e+a. We construct a simple analytic expression for the energy-loss rate for all conditions relevant for a red giant and include axion losses in evolutionary calculations from the main sequence to the helium flash. We find that \alpha_a\lapprox0.5\mn(-26) or m_a\lapprox 9\,\meV/\cos^2\beta lest the red giant core at helium ignition exceed its standard mass by more than 0.025\,\MM_\odot, in conflict with observational evidence. Our bound is the most restrictive limit on αa\alpha_a, but it does not exclude the possibility that axion emission contributes significantly to the cooling of ZZ~Ceti stars such as G117--B15A for which the period decrease was recently measured.Comment: 11 pages, uuencoded and compressed postscript fil

    Pseudoscalar Conversion and X-rays from the Sun

    Full text link
    We investigate the detection of a pseudoscalar ϕ\phi that couples electromagnetically via an interaction 14gϕFF~{1\over4}g \phi F {\tilde F}. In particular, we focus on the conversion of pseudoscalars produced in the sun's interior in the presence of the sun's external magnetic dipole field and sunspot-related magnetic fields. We find that the sunspot approach is superior. Measurements by the SXT on the Yohkoh satellite can measure the coupling constant down to g=0.5g=0.5--1×1010GeV11 \times 10^{-10}\,\rm GeV^{-1}, provided the pseudoscalar mass m<7×106m < 7{\times} 10^{-6}\,eV, which makes it competitive with other astrophysical approaches.Comment: 15 pages, RevTex file. Figures available upon request to [email protected]. (please include full mailing address in request). Submitted to Physics Letters

    Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology

    Full text link
    We calculate and display the primordial light-element abundances as a function of a neutrino degeneracy parameter \xi common to all flavors. It is the only unknown parameter characterizing the thermal medium at the primordial nucleosynthesis epoch. The observed primordial helium abundance Y_p is the most sensitive cosmic ``leptometer.'' Adopting the conservative Y_p error analysis of Olive and Skillman implies -0.04 \alt \xi \alt 0.07 whereas the errors stated by Izotov and Thuan imply \xi=0.0245+-0.0092 (1 sigma). Improved determinations of the baryon abundance have no significant impact on this situation. A determination of Y_p that reliably distinguishes between a vanishing or nonvanishing \xi is a crucial test of the cosmological standard assumption that sphaleron effects equilibrate the cosmic lepton and baryon asymmetries.Comment: 5 pages, 2 figures; minor changes, references added, replaced to match the published version in PRD (Brief Reports

    Earth matter effects in supernova neutrinos: Optimal detector locations

    Get PDF
    A model-independent experimental signature for flavor oscillations in the neutrino signal from the next Galactic supernova (SN) would be the observation of Earth matter effects. We calculate the probability for observing a Galactic SN shadowed by the Earth as a function of the detector's geographic latitude. This probability depends only mildly on details of the Galactic SN distribution. A location at the North Pole would be optimal with a shadowing probability of about 60%, but a far-northern location such as Pyhasalmi in Finland, the proposed site for a large-volume scintillator detector, is almost equivalent (58%). We also consider several pairs of detector locations and calculate the probability that only one of them is shadowed, allowing a comparison between a shadowed and a direct signal. For the South Pole combined with Kamioka this probability is almost 75%, for the South Pole combined with Pyhasalmi it is almost 90%. One particular scenario consists of a large-volume scintillator detector located in Pyhasalmi to measure the geo-neutrino flux in a continental location and another such detector in Hawaii to measure it in an oceanic location. The probability that only one of them is shadowed exceeds 50% whereas the probability that at least one is shadowed is about 80%. We provide an online tool to calculate different shadowing probabilities for the one- and two-detector cases.Comment: v2: 17 pages, 6 eps figures. Typos removed, matches the published version. Online tool to calculate the Earth shadowing probabilities available at http://www.mppmu.mpg.de/supernova/shadowing . High-resolution color version of fig_2a and fig_2b available at http://www.mppmu.mpg.de/supernova/shadowing/ma

    Decoherence in supernova neutrino transformations suppressed by deleptonization

    Get PDF
    In the dense-neutrino region at 50-400 km above the neutrino sphere in a supernova, neutrino-neutrino interactions cause large flavor transformations. We study when the multi-angle nature of the neutrino trajectories leads to flavor decoherence between different angular modes. We consider a two-flavor mixing scenario between nu_e and another flavor nu_x and assume the usual hierarchy F(nu_e)>F{antinu_e)>F(nu_x)=F(antinu_x) for the number fluxes. We define epsilon=(F(nu_e)-F(antinu_e))/(F(antinu_e)-F(antinu_x)) as a measure for the deleptonization flux which is the one crucial parameter. The transition between the quasi single-angle behavior and multi-angle decoherence is abrupt as a function of epsilon. For typical choices of other parameters, multi-angle decoherence is suppressed for epsilon>0.3, but a much smaller asymmetry suffices if the neutrino mass hierarchy is normal and the mixing angle small. The critical epsilon depends logarithmically on the neutrino luminosity. In a realistic supernova scenario, the deleptonization flux is probably enough to suppress multi-angle decoherence.Comment: 17 pages, 12 figures. Misprint in Eq (14) correcte

    Self-induced decoherence in dense neutrino gases

    Full text link
    Dense neutrino gases exhibit collective oscillations where "self-maintained coherence" is a characteristic feature, i.e., neutrinos of different energies oscillate with the same frequency. In a non-isotropic gas, however, the flux term of the neutrino-neutrino interaction has the opposite effect of causing kinematical decoherence of neutrinos propagating in different directions, an effect that is at the origin of the "multi-angle behavior" of neutrinos streaming off a supernova core. We cast the equations of motion in a form where the role of the flux term is manifest. We study in detail the symmetric case of equal neutrino and antineutrino densities where the evolution consists of collective pair conversions ("bipolar oscillations"). A gas of this sort is unstable in that an infinitesimal anisotropy is enough to trigger a run-away towards flavor equipartition. The "self-maintained coherence" of a perfectly isotropic gas gives way to "self-induced decoherence."Comment: Revtex, 16 pages, 12 figure

    Detecting Axion-Like Particles With Gamma Ray Telescopes

    Full text link
    We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground based gamma ray telescopes in the TeV range.Comment: corrected typos, one plot modified, material rearranged for clarification. Conclusions unchanged. Matches version published in Phys. Rev. Let

    On some singularities of the correlation functions that determine neutrino opacities

    Get PDF
    Certain perturbation graphs in the calculation of the effects of the medium on neutrino scattering in supernova matter have a nonintegrable singularity in a physical region. A number of papers have addressed the apparent pathology through an ansatz that invokes higher order (rescattering) effects. Taking the Gamow-Teller terms as an example, we display an expression for the spin-spin correlation function that determines the cross-sections. It is clear from the form that there are no pathologies in the order by order perturbation expansion. Explicit formulae are given for a simple case, leading to an answer that is very different from one given by other authors.Comment: 8 page
    corecore