43,285 research outputs found
Automatically deploying nozzle exit cone extension Patent
Automatically deploying nozzle exit cone extensio
Aeroplane design study STOL airliner (A71). Part 1- configuration description and data
The interest in STOL airliners was reflected in the
choice of a 100-118 passenger short range aircraft of this
type as the 1971 design project. In addition to the use of
the study for detailed investigation by the students of
Aircraft Design it also served as the basis for an
investigation of the low speed lift and control problems
of STOL aircraft.
This report is concerned with a description of the
configuration adopted and specification of geometric and
aerodynamic data. As such it is the first part of the
complete reporting of the investigation, subsequent parts
being concerned with the more detailed work.
The aircraft was designed to operate from 2000 ft long
single runways and have a cruising speed of up to 11 - 0.83
at 30,000 ft altitude. The estimated gross weight is
115,000 lb and when landing at 100,000 lb weight the approach
speed is 79 knots. The high lift coefficients necessitated
by this are obtained either by externally blown jet flaps or
an augmenter wing arrangement
SCUBA observations of the Horsehead Nebula - what did the horse swallow?
We present observations taken with SCUBA on the JCMT of the Horsehead Nebula
in Orion (B33), at wavelengths of 450 and 850 \mum. We see bright emission from
that part of the cloud associated with the photon-dominated region (PDR) at the
`top' of the horse's head, which we label B33-SMM1. We characterise the
physical parameters of the extended dust responsible for this emission, and
find that B33-SMM1 contains a more dense core than was previously suspected. We
compare the SCUBA data with data from the Infrared Space Observatory (ISO) and
find that the emission at 6.75-\mum is offset towards the west, indicating that
the mid-infrared emission is tracing the PDR while the submillimetre emission
comes from the molecular cloud core behind the PDR. We calculate the virial
balance of this core and find that it is not gravitationally bound but is being
confined by the external pressure from the HII region IC434, and that it will
either be destroyed by the ionising radiation, or else may undergo triggered
star formation. Furthermore we find evidence for a lozenge-shaped clump in the
`throat' of the horse, which is not seen in emission at shorter wavelengths. We
label this source B33-SMM2 and find that it is brighter at submillimetre
wavelengths than B33-SMM1. SMM2 is seen in absorption in the 6.75-\mum ISO
data, from which we obtain an independent estimate of the column density in
excellent agreement with that calculated from the submillimetre emission. We
calculate the stability of this core against collapse and find that it is in
approximate gravitational virial equilibrium. This is consistent with it being
a pre-existing core in B33, possibly pre-stellar in nature, but that it may
also eventually undergo collapse under the effects of the HII region.Comment: 11 pages, 6 figures, accepted by MNRA
A turbulent MHD model for molecular clouds and a new method of accretion on to star-forming cores
We describe the results of a sequence of simulations of gravitational
collapse in a turbulent magnetized region. The parameters are chosen to be
representative of molecular cloud material. We find that several protostellar
cores and filamentary structures of higher than average density form. The
filaments inter-connect the high density cores. Furthermore, the magnetic field
strengths are found to correlate positively with the density, in agreement with
recent observations. We make synthetic channel maps of the simulations and show
that material accreting onto the cores is channelled along the magnetized
filamentary structures. This is compared with recent observations of S106, and
shown to be consistent with these data. We postulate that this mechanism of
accretion along filaments may provide a means for molecular cloud cores to grow
to the point where they become gravitationally unstable and collapse to form
stars.Comment: Accepted by MNRA
SCUBA polarisation observations of the magnetic fields in the prestellar cores L1498 and L1517B
We have mapped linearly polarized dust emission from the prestellar cores
L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the
Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter SCUBAPOL
at a wavelength of 850um. We use these measurements to determine the
plane-of-sky magnetic field orientation in the cores. In L1498 we see a
magnetic field across the peak of the core that lies at an offset of 19 degrees
to the short axis of the core. This is similar to the offsets seen in previous
observations of prestellar cores. To the southeast of the peak, in the
filamentary tail of the core, we see that the magnetic field has rotated to lie
almost parallel to the long axis of the filament. We hypothesise that the field
in the core may have decoupled from the field in the filament that connects the
core to the rest of the cloud. We use the Chandrasekhar-Fermi (CF) method to
measure the plane-of-sky field strength in the core of L1498 to be 10 +/- 7 uG.
In L1517B we see a more gradual turn in the field direction from the northern
part of the core to the south. This appears to follow a twist in the filament
in which the core is buried, with the field staying at a roughly constant 25
degree offset to the short axis of the filament, also consistent with previous
observations of prestellar cores. We again use the CF method and calculate the
magnetic field strength in L1517B also to be 30 +/- 10 uG. Both cores appear to
be roughly virialised. Comparison with our previous work on somewhat denser
cores shows that, for the denser cores, thermal and non-thermal (including
magnetic) support are approximately equal, while for the lower density cores
studied here, thermal support dominates.Comment: 6 pages, 2 figures; accepted for publication by MNRA
Hydrodynamics of photoionized columns in the Eagle Nebula, M 16
We present hydrodynamical simulations of the formation, structure and
evolution of photoionized columns, with parameters based on those observed in
the Eagle Nebula. On the basis of these simulations we argue that there is no
unequivocal evidence that the dense neutral clumps at heads of the columns were
cores in the pre-existing molecular cloud. In our simulations, a variety of
initial conditions leads to the formation and maintenance of near-equilibrium
columns. Therefore, it is likely that narrow columns will often occur in
regions with large-scale inhomogeneities, but that observations of such columns
can tell us little about the processes by which they formed. The manner in
which the columns in our simulations develop suggests that their evolution may
result in extended sequences of radiation-induced star formation.Comment: 12 pages, 9 figures, Latex, MN macros, in press with MNRA
Microscopic calculation of transition intensities for vibrational bands and high-K isomers
We investigate the effect of the Coriolis coupling and the residual
interactions upon the inter-band transition rates for the vibrational bands and
the decay of two-quasiparticle high-K isomers.Comment: 5 pages, RevTex using epsf.sty, 2 postscript figures included. Talk
presented at Conference on "Nuclear structure at the extremes" (June 17 - 19,
1998, Lewes, UK
Bounding inconsistency using a novel threshold metric for dead reckoning update packet generation
Human-to-human interaction across distributed applications requires that sufficient consistency be maintained among participants in the face of network characteristics such as latency and limited bandwidth. The level of inconsistency arising from the network is proportional to the network delay, and thus a function of bandwidth consumption. Distributed simulation has often used a bandwidth reduction technique known as dead reckoning that combines approximation and estimation in the communication of entity movement to reduce network traffic, and thus improve consistency. However, unless carefully tuned to application and network characteristics, such an approach can introduce more inconsistency than it avoids. The key tuning metric is the distance threshold. This paper questions the suitability of the standard distance threshold as a metric for use in the dead reckoning scheme. Using a model relating entity path curvature and inconsistency, a major performance related limitation of the distance threshold technique is highlighted. We then propose an alternative timeâspace threshold criterion. The timeâspace threshold is demonstrated, through simulation, to perform better for low curvature movement. However, it too has a limitation. Based on this, we further propose a novel hybrid scheme. Through simulation and live trials, this scheme is shown to perform well across a range of curvature values, and places bounds on both the spatial and absolute inconsistency arising from dead reckoning
- âŠ