21,927 research outputs found

    Vacuum structure and effective potential at finite temperature: a variational approach

    Full text link
    We compute the effective potential for Ï•4\phi^4 theory with a squeezed coherent state type of construct for the ground state. The method essentially consists in optimising the basis at zero and finite temperatures. The gap equation becomes identical to resumming the infinite series of daisy and super daisy graphs while the effective potential includes multiloop effects and agrees with that obtained through composite operator formalism at finite temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and Part. Phys.

    First principles calculation of polarization induced interfacial charges in GaN/AlN heterostructures

    Full text link
    We propose a new method to calculate polarization induced interfacial charges in semiconductor heterostructures using classical electrostatics applied to real-space band diagrams from first principles calculations and apply it to GaN/AlN heterostructures with ultrathin AlN layers (4-6 monolayers). We show that the calculated electric fields and interfacial charges are independent of the exchange-correlation functionals used (local-density approximation and hybrid functionals). We also find the calculated interfacial charge of (6.8 +/- 0.4) x 10^13 cm-2 to be in excellent agreement with experiments and the value of 6.58 x 10^13 cm-2 calculated from bulk polarization constants, validating the use of bulk constants even for very thin films.Comment: 3 pages, 2 figures; submitted to Applied Physics Letter

    Statistical Mechanics of DNA Rupture: Theory and Simulations

    Full text link
    We study the effects of the shear force on the rupture mechanism on a double stranded DNA. Motivated by recent experiments, we perform the atomistic simulations with explicit solvent to obtain the distributions of extension in hydrogen and covalent bonds below the rupture force. We obtain a significant difference between the atomistic simulations and the existing results in the iterature based on the coarse-grained models (theory and simulations). We discuss the possible reasons and improve the coarse-grained model by incorporating the consequences of semi-microscopic details of the nucleotides in its description. The distributions obtained by the modified model (simulations and theoretical) are qualitatively similar to the one obtained using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin note: text overlap with arXiv:1104.305

    Resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments

    Full text link
    This work has attempted to reconcile puzzling neutrino oscillation results from the LSND, KARMEN and MiniBooNE experiments. We show that the LSND evidence for νˉμ→νˉe\bar{\nu}_\mu \to \bar{\nu}_e oscillations, its long-standing disagreement with the results from KARMEN, and the anomalous event excess observed by MiniBooNE in νμ\nu_\mu and νˉμ\bar{\nu}_\mu data could all be explained by the existence of a heavy sterile neutrino (νh\nu_h). All these results are found to be consistent with each other assuming that the νh\nu_h is created in νμ\nu_\mu neutral-current interactions and decays radiatively into a photon and a light neutrino. Assuming the νh\nu_h is produced through mixing with νμ\nu_\mu, the combined analysis of the LSND and MiniBooNe excess events suggests that the νh\nu_h mass is in the range from 40 to 80 MeV, the mixing strength is ∣Uμh∣2≃10−3−10−2|U_{\mu h}|^2 \simeq 10^{-3}-10^{-2}, and the lifetime is τνh≲10−9\tau_{\nu_h} \lesssim 10^{-9} s. Surprisingly, this LSND-MiniBooNE parameters window is found to be unconstrained by the results from the most sensitive experiments searching for heavy neutrino. We set new limits on ∣Uμh∣2|U_{\mu h}|^2 for the LSND-MiniBooNE favorable mass region from the precision measurements of the Michel spectrum by the TWIST experiment. The results obtained provide a strong motivation for a sensitive search for the νh\nu_h in a near future K K decay or neutrino experiments, which fit well in the existing/planned experimental programs at CERN or FNAL. The question of whether the heavy neutrino is Dirac or Majorana particle is briefly discussed.Comment: 24 pages, 28 figures, version to appear in PR

    Vector meson masses in hot nuclear matter : the effect of quantum corrections

    Get PDF
    The medium modification of vector meson masses is studied taking into account the quantum correction effects for the hot and dense hadronic matter. In the framework of Quantum Hadrodynamics, the quantum corrections from the baryon and scalar meson sectors were earlier computed using a nonperturbative variational approach through a realignment of the ground state with baryon-antibaryon and sigma meson condensates. The effect of such corrections was seen to lead to a softer equation of state giving rise to a lower value for the compressibility and, an increase in the in-medium baryonic masses than would be reached when such quantum effects are not taken into account. These quantum corrections arising from the scalar meson sector result in an increase in the masses of the vector mesons in the hot and dense matter, as compared to the situation when only the vacuum polarisation effects from the baryonic sector are taken into account.Comment: 13 pages revtex file, 6 figure
    • …
    corecore