116 research outputs found

    Correlation between serum HCV RNA and aminotransferase levels in patients with chronic HCV infection

    Full text link
    Cross-sectional studies on the correlation between serum hepatitis C virus (HCV) RNA and alanine aminotransferase (ALT) levels in patients with chronic hepatitis C have yielded conflicting results. We conducted a longitudinal study to examine the correlation between HCV viremia and serum ALT levels in individual patients over time. Serial samples (mean 9) from 25 patients with chronic HCV infection, including interferon-treated and untreated immunocompetent and immunosuppressed patients, collected over a period of 1–4.8 years (mean 2.6 years) were tested for HCV RNA and ALT levels using a highly reproducible quantitative (bDNA) assay. A significant correlation was found between serum HCV RNA and ALT levels in the patients who received IFN therapy, but no correlation was observed in the untreated patients. Among the untreated patients, the immunosuppressed patients had significantly higher HCV RNA levels (39±4 vs 3.6±8 Meq/ml, P <0.0001) but significantly lower ALT (56±11 vs 97±12 units/liter, P =0.03) levels when compared to the immunocompetent ones. In summary, we found no correlation between serum HCV RNA and ALT levels in chronic hepatitis C patients who are not receiving interferon therapy. Immunosuppression results in higher HCV RNA but lower ALT levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44425/1/10620_2005_Article_BF02071402.pd

    Diagnostic tests for hepatitis C

    Full text link

    A multigene family encodes the human cytomegalovirus glycoprotein complex gcII (gp47-52 complex)

    Full text link
    The HXLF (HindIII-X left reading frame) gene family is a group of five genes that share one or two regions of homology and are arranged in tandem within the short unique component of the human cytomegalovirus genome (K. Weston and B.G. Barrell, J. Mol. Biol. 192:177-208, 1986). These genes were cloned into an SP6 expression vector in both the sense and antisense orientations. An abundant 1.62-kilobase (kb) bicistronic mRNA, predicted to originate from HXLF1 and HXLF2, was detected in the cytoplasm of infected human fibroblast cells by Northern (RNA) blot analysis. Less abundant RNAs of 1.0 and 0.8 kb, predicted to originate from the HXLF5 and HXLF2 genes, respectively, were also detected. Monocistronic, bicistronic, and polycistronic RNAs synthesized in vitro by using SP6 polymerase were translated in rabbit reticulocyte lysates with or without canine pancreatic microsomal membranes. The HXLF1 or the HXLF1 and HXLF2 translation products were detected when the above mRNAs were used. The HXLF3, HXLF4, and HXLF5 gene products were not detected by in vitro translation of the SP6-derived polycistronic mRNA. Nonglycosylated or glycosylated HXLF1 and HXLF2 gene products were immunoprecipitated by monoclonal antibody 9E10, which is specific for a virion envelope glycoprotein complex designated gcII (gp47-52 complex). In addition, the monoclonal antibody 9E10 immunoprecipitated a diffuse glycoprotein band, designated gp47-52, from HCMV-infected cell lysates. The amino acid composition of gp47-52 purified from viron envelopes has the highest similarity to the predicted amino acid composition of the HXLF1 plus HXLF2 open reading frames, but it is more similar to HXLF2 than to HXLF1. The Northern blot results imply that gp47-52 is synthesized predominantly from the abundant 1.62-kb bicistronic mRNA encoded by the HXLF1 and HXLF2 genes. However, the glycoprotein could also be synthesized by the monocistronic 0.8-kb mRNA encoded by the HXLF2 gene as well as by the mRNAs predicted from the other HXLF genes.</jats:p
    corecore