82 research outputs found
Conversion of the prodrug etoposide phosphate to etoposide in gastric juice and bile.
Etoposide phosphate is a water-soluble prodrug of etoposide. It was expected that this prodrug could be used to overcome the solubility limitations and erratic bioavailability of oral etoposide. To investigate the possibility of prodrug conversion to etoposide within the gastrointestinal lumen, etoposide phosphate was dissolved in water and incubated with human gastric juice or human bile in vitro. Samples were collected during 150 min and analysed for etoposide concentration with high-performance liquid chromatography. Conversion of prodrug to etoposide during incubation with gastric juice was negligible. There was significant conversion during incubation with bile at pH 7-8. The percentage of prodrug converted to etoposide at pH 8 after 60 min was 78 +/- 18% (mean +/- S.D.) for a 0.1 mg ml-1 prodrug solution and 36 +/- 26% for 0.5 mg ml-1. At pH 7, after 60 min 22% of prodrug was converted to etoposide when incubated at 0.1 mg ml-1 and 10% at 0.5 mg ml-1. No conversion was found after inactivation of alkaline phosphate (AP) by overnight heating of bile at 65 degrees C or by the addition of disodium edetate to the bile. In conclusion, because of AP in bile, variable conversion of etoposide phosphate to etoposide can be expected within the intestinal lumen after oral administration. This could have important pharmacokinetic consequences
Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis
Linezolid is a promising antimicrobial agent for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its use is limited by toxicity. Therapeutic drug monitoring (TDM) may help to minimize toxicity while adequate drug exposure is maintained. Conventional plasma sampling and monitoring might be hindered in many parts of the world by logistical problems that may be solved by dried blood spot (DBS) sampling. The aim of this study was to develop and validate a novel method for TDM of linezolid in MDR-TB patients using DBS sampling. Plasma, venous DBS, and capillary DBS specimens were obtained simultaneously from eight patients receiving linezolid. A DBS sampling method was developed and clinically validated by comparing DBS with plasma results using Passing-Bablok regression and Bland-Altman analysis. This study showed that DBS analysis was reproducible and robust. Accuracy and between- and within-day precision values from three validations presented as bias and coefficient of variation (CV) were less than 17.2% for the lower limit of quantification and less than 7.8% for other levels. The method showed a high recovery of approximately 95% and a low matrix effect of less than 8.7%. DBS specimens were stable at 37 degrees C for 2 months and at 50 degrees C for 1 week. The ratio of the concentration of linezolid in DBS samples to that in plasma was 1.2 (95% confidence interval [CI], 1.12 to 1.27). Linezolid exposure calculated from concentrations DBS samples and plasma showed good agreement. In conclusion, DBS analysis of linezolid is a promising tool to optimize linezolid treatment in MDR-TB patients. An easy sampling procedure and high sample stability may facilitate TDM, even in underdeveloped countries with limited resources and where conventional plasma sampling is not feasible
A prolonged methoxymorpholino doxorubicin (PNU-152243 or MMRDX) infusion schedule in patients with solid tumours: a phase 1 and pharmacokinetic study
The aim of this phase I study was to assess feasibility, pharmacokinetics and toxicity of methoxymorpholino doxorubicin (MMRDX or PNU-152243) administered as a 3 h intravenous infusion once every 4 weeks. Fourteen patients with intrinsically anthracycline-resistant tumours received 37 cycles of MMRDX. The first cohort of patients was treated with 1 mg m−2of MMRDX. The next cohorts received 1.25 mg m−2and 1.5 mg m−2respectively. Common toxicity criteria (CTC) grade III/IV nausea and vomiting were observed in 1/18 cycles at 1.25 mg m−2and in 2/11 cycles at 1.5 mg m−2. Transient elevation in transaminases up to CTC grade III was observed in 2/16 cycles at 1.25 mg m−2and 4/11 cycles at 1.5 mg m−2. No cardiotoxicity was observed. At 1.25 mg m−2CTC grade IV neutropenia occurred in 1/17 cycles. At 1.5 mg m−2CTC grade III neutropenia was seen in 2/7 and grade IV in 3/7 evaluable cycles. Thrombocytopenia grade III was observed in 2/9 and grade IV in 1/9 evaluable cycles. One patient treated at 1.5 mg m−2died with neutropenic fever. Therefore, dose-limiting toxicity was reached and 1.25 mg m−2was considered the maximum tolerated dose for MMRDX as 3 h infusion. No tumour responses were observed. Pharmacokinetic parameters showed a rapid clearance of MMRDX from the circulation by an extensive tissue distribution. Renal excretion of the drug and its metabolite was negligible. In conclusion, prolongation of MMRDX infusion to 3 h does not improve the toxicity profile as compared with bolus administration. © 2000 Cancer Research Campaig
Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells.
In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug accumulation significantly in the cDDP-resistant cell lines but had little effect on drug accumulation in the cDDP-sensitive cell lines. DNA adduct formation, however, was significantly increased in all cell lines studied. Furthermore, ongoing formation of platinum (Pt)-DNA adducts after the end of cDDP treatment was enhanced and/or adduct removal was decreased in heated cells, resulting in relatively more DNA damage remaining at 24 h after the end of cDDP exposure. Correlation plots with survival revealed weak correlations with cellular Pt accumulation (r2 = 0.59) and initial Pt-DNA adduct formation (r2 = 0.64). Strong correlations, however, were found with Pt-DNA adducts at 6 h (r2 = 0.97) and 24 h (r2 = 0.89) after the incubation with the drug. In conclusion, the mechanism by which heat sensitizes cells for cDDP action seems to be the sum of multiple factors, which comprise heat effects on accumulation, adduct formation and adduct processing. This mechanism did not seem to differ between cDDP-sensitive and -resistant cells, emphasizing the potential of hyperthermia to reduce cDDP resistance
A phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours
Because tumour cell proliferation is highly dependent upon up-regulation of de-novo polyamine synthesis, inhibition of the polyamine synthesis pathway represents a potential target for anticancer therapy. SAM486A (CGP 48664) is a new inhibitor of the polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (SAMDC), more potent and specific than the first-generation SAMDC inhibitor methylglyoxal (bis) guanylhydrazone (MGBG). Preclinical testing confirmed promising antiproliferative activity. In this phase I study, SAM486A was given 4-weekly as a 120 h infusion. 39 adult cancer patients were enrolled with advanced/refractory disease not amenable to established treatments, PS ≤ 2, adequate marrow, liver, renal and cardiac function. Doses were escalated in 100% increments without toxicity in 24 pts from 3 mg m–2cycle–1up to 400 mg m–2cycle–1. At 550 and 700 mg m–2cycle–1reversible dose-limiting neutropenia occurred. Other toxicities included mild fatigue, nausea and vomiting. No objective remission was seen. Pharmakokinetic analysis showed a terminal half-life of approximately 2 days. AUC and Cmax were related to dose; neutropenia correlated with AUC. The recommended dose for further phase II studies on this schedule is 400 mg m–2cycle–1. © 2000 Cancer Research Campaig
Long-term exposure to circulating platinum is associated with late effects of treatment in testicular cancer survivors
BACKGROUND: The success of cisplatin-based (Platinol, Bristol-Myers Squibb Company, New York, NY, USA) chemotherapy for testicular cancer comes at the price of long-term and late effects related to healthy tissue damage. We assessed and modelled serum platinum (Pt) decay after chemotherapy and determined relationships between long-term circulating Pt levels and known late effects. PATIENTS AND METHODS: In 99 testicular cancer survivors, treated with cisplatin-based chemotherapy, serum and 24-h urine samples were collected during follow-up (1–13 years after treatment). To build a population pharmacokinetic model, measured Pt data were simultaneously analysed, together with cisplatin dose, age, weight and height using the NONMEM software. Based on this model, area under the curve between 1 and 3 years after treatment (Pt AUC(1–3 years)) was calculated for each patient. Predicted long-term Pt exposure was related to renal function and to late effects of treatment assessed median 9 (3–15) years after chemotherapy. RESULTS: Decay of Pt was best described by a two-compartment model. Mean terminal T(1/2) was 3.7 (range 2.5–5.2) years. Pt AUC(1–3 years) correlated with cumulative cisplatin dose, and creatinine clearance before and 1 year after treatment. Patients with paraesthesia had higher Pt AUC(1–3 years) (30.9 versus 27.0 µg/l month) compared with those without paraesthesia (P = 0.021). Patients with hypogonadism, elevated LDL-cholesterol levels or hypertension also had higher Pt AUC(1–3 years). CONCLUSIONS: Renal function before and after cisplatin treatment is an important determinant of long-term Pt exposure. Known long-term effects of testicular cancer treatment, such as paraesthesia, hypogonadism, hypercholesterolaemia and hypertension, are associated with long-term circulating Pt exposure
- …