1,773 research outputs found
Cold, anisotropically-interacting van der Waals molecule: TiHe
We have used laser ablation and helium buffer-gas cooling to produce the
titanium-helium van der Waals molecule at cryogenic temperatures. The molecules
were detected through laser-induced fluorescence spectroscopy. Ground-state
Ti-He binding energies were determined for the ground and first rotationally
excited states from studying equilibrium thermodynamic properties, and found to
agree well with theoretical calculations based on newly calculated ab initio
Ti-He interaction potentials, opening up novel possibilities for studying the
formation, dynamics, and non-universal chemistry of van der Waals clusters at
low temperatures
Triviality and vacuum stability bounds in the three-loop neutrino mass model
We study theoretical constraints on the parameter space under the conditions
from vacuum stability and triviality in the three-loop radiative seesaw model
with TeV-scale right-handed neutrinos which are odd under the parity. In
this model, some of the neutrino Yukawa coupling constants can be of the order
of one. Requirement of strongly first order phase transition for successful
electroweak baryogenes is also prefers order-one coupling constants in the
scalar sector. Hence, it is important to clarify whether this model satisfies
those theoretical conditions up to a given cutoff scale. It is found that the
model can be consistent up to the scale above 10 TeV in the parameter region
where the neutrino data, the lepton flavor violation data, the thermal relic
abundance of dark matter as well as the requirement from the strongly first
order phase transition are satisfied.Comment: 22 pages, 14 figure
Higher Order Stability of a Radiatively Induced 220 GeV Higgs Mass
The effective potential for radiatively broken electroweak symmetry in the
single Higgs doublet Standard Model is explored to four sequentially subleading
logarithm-summation levels (5-loops) in the dominant Higgs self-interaction
couplant . We augment these results with all contributing leading
logarithms in the remaining large but sub-dominant Standard Model couplants
(t-quark, QCD and gauge couplants) as well as next to
leading logarithm contributions from the largest of these, the t-quark and QCD
couplants. Order-by-order stability is demonstrated for earlier leading
logarithm predictions of an order 220 GeV Higgs boson mass in conjunction with
fivefold enhancement of the value for over that anticipated from
conventional spontaneous symmetry breaking.Comment: revtex, 6 pages. Analysis and text is expanded in revised versio
The Effective Potential, the Renormalisation Group and Vacuum Stability
We review the calculation of the the effective potential with particular
emphasis on cases when the tree potential or the
renormalisation-group-improved, radiatively corrected potential exhibits
non-convex behaviour. We illustrate this in a simple Yukawa model which
exhibits a novel kind of dimensional transmutation. We also review briefly
earlier work on the Standard Model. We conclude that, despite some recent
claims to the contrary, it can be possible to infer reliably that the tree
vacuum does not represent the true ground state of the theory.Comment: 23 pages; 5 figures; v2 includes minor changes in text and additional
reference
From cartoons to quantitative models in Golgi transport
Background: Cell biology is evolving to become a more formal and quantitative science. In particular, several mathematical models have been proposed to address Golgi self-organisation and protein and lipid transport. However, most scientific articles about the Golgi apparatus are still using static cartoons that miss the dynamism of this organelle. Results: In this report, we show that schematic drawings of Golgi trafficking can be easily translated into an agent-based model using the Repast platform. The simulations generate an active interplay among cisternae and vesicles rendering quantitative predictions about Golgi stability and transport of soluble and membrane-associated cargoes. The models can incorporate complex networks of molecular interactions and chemical reactions by association with COPASI, a software that handles ordinary differential equations. Conclusions: The strategy described provides a simple, flexible and multiscale support to analyse Golgi transport. The simulations can be used to address issues directly linked to the mechanism of transport or as a way to incorporate the complexity of trafficking to other cellular processes that occur in dynamic organelles. Significance: We show that the rules implicitly present in most schematic representations of intracellular trafficking can be used to build dynamic models with quantitative outputs that can be compared with experimental results.Fil: Quiros, D. Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Nieto, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Mayorga, Luis Segundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Radiative Electroweak Symmetry-Breaking Revisited
In the absence of a tree-level scalar-field mass, renormalization-group
methods permit the explicit summation of leading-logarithm contributions to all
orders of the perturbative series within the effective potential for
electroweak symmetry. This improvement of the effective
potential function is seen to reduce residual dependence on the renormalization
mass scale. The all-orders summation of leading logarithm terms involving the
dominant three couplings contributing to radiative corrections is suggestive of
a potential characterized by a plausible Higgs boson mass of 216 GeV. However,
the tree potential's local minimum at is restored if QCD is
sufficiently strong.Comment: revtex, 4 pages, 1 eps figure embedded in manuscript. Updated version
contains additional comments and corrects minor error
Microfluidic genome-wide profiling of intrinsic electrical properties in Saccharomyces cerevisiae
Methods to analyze the intrinsic physical properties of cells – for example, size, density, rigidity, or electrical properties – are an active area of interest in the microfluidics community. Although the physical properties of cells are determined at a fundamental level by gene expression, the relationship between the two remains exceptionally complex and poorly characterized, limiting the adoption of intrinsic separation technologies. To improve our current understanding of how a cell's genotype maps to a measurable physical characteristic and quantitatively investigate the potential of using these characteristics as biomarkers, we have developed a novel screen that combines microfluidic cell sorting with high-throughput sequencing and the haploid yeast deletion library to identify genes whose functions modulate one such characteristic – intrinsic electrical properties. Using this screen, we are able to establish a high-content electrical profile of the haploid yeast gene deletion strains. We find that individual genetic deletions can appreciably alter the electrical properties of cells, affecting [approximately] 10% of the 4432 gene deletion strains screened. Additionally, we find that gene deletions affecting electrical properties in specific ways (i.e. increasing or decreasing effective conductivity at higher or lower electric field frequencies) are strongly associated with an enriched subset of fundamental biological processes that can be traced to specific pathways and complexes. The screening approach demonstrated here and the attendant results are immediately applicable to the intrinsic separations community.Singapore-MIT AllianceNational Science Foundation (U.S.) (NSF IDBR grant DBI-0852654)National Institutes of Health (U.S.) (NIH grant EB005753
Higgs Mediated EDMs in the Next-to-MSSM: An Application to Electroweak Baryogenesis
We perform a study on the predictions of electric-dipole moments (EDMs) of
neutron, Mercury (Hg), Thallium (Tl), deuteron, and Radium (Ra) in the
framework of next-to-minimal supersymmetric standard model (NMSSM) with
CP-violating parameters in the superpotential and soft-supersymmetry-breaking
sector. We confine to the case in which only the physical tree-level CP phase
, associated with the couplings of the singlet
terms in the superpotential and with the vacuum-expectation-values (VEVs),
takes on a nonzero value. We found that the one-loop contributions from
neutralinos are mostly small while the two-loop Higgs-mediated contributions of
the Barr-Zee (BZ) type diagrams dominate. We emphasize a scenario motivated by
electroweak baryogenesis.Comment: 36 pages, 9 figures, to appear in PR
Covariant and locally Lorentz-invariant varying speed of light theories
We propose definitions for covariance and local Lorentz invariance applicable
when the speed of light is allowed to vary. They have the merit of
retaining only those aspects of the usual definitions which are invariant under
unit transformations, and which can therefore legitimately represent the
outcome of an experiment. We then discuss some possibilities for invariant
actions governing the dynamics of such theories. We consider first the
classical action for matter fields and the effects of a changing upon
quantization. We discover a peculiar form of quantum particle creation due to a
varying . We then study actions governing the dynamics of gravitation and
the speed of light. We find the free, empty-space, no-gravity solution, to be
interpreted as the counterpart of Minkowksi space-time, and highlight its
similarities with Fock-Lorentz space-time. We also find flat-space string-type
solutions, in which near the string core is much higher. We label them
fast-tracks and compare them with gravitational wormholes. We finally discuss
general features of cosmological and black hole solutions, and digress on the
meaning of singularities in these theories.Comment: To be published in Physical Review
Dynamics of Quintessence Models of Dark Energy with Exponential Coupling to the Dark Matter
We explore quintessence models of dark energy which exhibit non-minimal
coupling between the dark matter and the dark energy components of the cosmic
fluid. The kind of coupling chosen is inspired in scalar-tensor theories of
gravity. We impose a suitable dynamics of the expansion allowing to derive
exact Friedmann-Robertson-Walker solutions once the coupling function is given
as input. Self-interaction potentials of single and double exponential types
emerge as result of our choice of the coupling function. The stability and
existence of the solutions is discussed in some detail. Although, in general,
models with appropriated interaction between the components of the cosmic
mixture are useful to handle the coincidence problem, in the present study the
coincidence can not be evaded due to the choice of the solution generating
ansatz.Comment: 10 pages, 7 figure
- …