1,238 research outputs found

    Concurrence of assistance and Mermin inequality on three-qubit pure states

    Full text link
    We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states. We find that if a given three-qubit pure state has the minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality.Comment: 4 pages, 1 figur

    Quantum states for perfectly secure secret sharing

    Full text link
    In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, and hence the states could be distillable into the Greenberger-Horne-Zeilinger state. We finally exhibit a class of secret-sharing states, which have an arbitrarily small amount of bipartite distillable entanglement for a certain split.Comment: 4 page

    A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    Full text link
    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50 x 20 deg. at a wavelength of 9 micron. Aims. We investigate the origin and the physical properties of the residual component. Methods. We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results. The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I_9um/I_18um with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions. Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.Comment: 5 pages, 4 figures, accepted by Astronomy and Astrophysic

    Multiphase Equilibrium Behavior of the Mixture Carbon Dioxide + Ethane + Methanol

    Get PDF
    The Three-Phase Liquid-Liquid-Vapor (Llg) Phase Equilibrium Behavior of the Mixture Carbon Dioxide + Ethane + Methanol Was Experimentally Studied. the Boundaries of the Three-Phase Llg Region in Pressure-Temperature Space Are Delineated. Compositions and Molar Volumes of the Two Liquid Phases and the Vapor Phase Along the 288.15 and 298.15 K Isotherms Are Reported. © 1994, American Chemical Society. All Rights Reserved

    Quantum Creation of Black Hole by Tunneling in Scalar Field Collapse

    Get PDF
    Continuously self-similar solution of spherically symmetric gravitational collapse of a scalar field is studied to investigate quantum mechanical black hole formation by tunneling in the subcritical case where, classically, the collapse does not produce a black hole.Comment: t clarification of the quantization method in Sec. IV, version to appear in PR

    Spacelike surfaces with free boundary in the Lorentz-Minkowski space

    Full text link
    We investigate a variational problem in the Lorentz-Minkowski space \l^3 whose critical points are spacelike surfaces with constant mean curvature and making constant contact angle with a given support surface along its common boundary. We show that if the support surface is a pseudosphere, then the surface is a planar disc or a hyperbolic cap. We also study the problem of spacelike hypersurfaces with free boundary in the higher dimensional Lorentz-Minkowski space \l^{n+1}.Comment: 16 pages. Accepted in Classical and Quantum Gravit

    A Micro Molecular Bipolar Outflow From HL Tau

    Full text link
    We present detailed geometry and kinematics of the inner outflow toward HL Tau observed using Near Infrared Integral Field Spectograph (NIFS) at the Gemini-North 8-m Observatory. We analyzed H2 2.122 um emission and [Fe II] 1.644 um line emission as well as the adjacent continuum observed at a <0".2 resolution. The H2 emission shows (1) a bubble-like geometry to the northeast of the star, as briefly reported in the previous paper, and (2) faint emission in the southwest counterflow, which has been revealed through careful analysis. The emission on both sides of the star show an arc 1".0 away from the star, exhibiting a bipolar symmetry. Different brightness and morphologies in the northeast and southwest flows are attributed to absorption and obscuration of the latter by a flattened envelope and a circumstellar disk. The H2 emission shows a remarkably different morphology from the collimated jet seen in [Fe II] emission. The positions of some features coincide with scattering continuum, indicating that these are associated with cavities in the dusty envelope. Such properties are similar to millimeter CO outflows, although the spatial scale of the H2 outflow in our image (~150 AU) is strikingly smaller than the mm outflows, which often extend over 1000-10000 AU scales. The position-velocity diagram of the H2 and [Fe II] emission do not show any evidence for kinematic interaction between these flows. All results described above support the scenario that the jet is surrounded by an unseen wide-angled wind, which interacts with the ambient gas and produce the bipolar cavity and shocked H2 emission.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions

    Get PDF
    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX, No Figure
    corecore