141 research outputs found
Self-reported Dominance in Women: Associations with Hormonal Contraceptive use, Relationship Status, and Testosterone
A Mathematical Analysis of Concomitant Virus Replication and Heat Inactivation
A mathematical analysis of virus production with accompanying heat inactivation, from which the rate of virus release and total virus production are readily calculated, is presented. Applications of this analysis for Sindbis and Chikungunya viruses are discussed.</jats:p
Herpes simplex virus DNA polymerase as the site of phosphonoacetate sensitivity: temperature-sensitive mutants
Temperature-sensitive (ts) mutants in a number of complementation groups of herpes simplex virus type 1 (HSV-1) are deficient in DNA polymerase induction at the restrictive temperature. Twenty-two mutants in 15 complementation groups were tested for sensitivity to phosphonoacetate (PAA), a compound that inhibits HSV replication in vivo and the DNA polymerase in vitro. One mutant, tsD9, was resistant to PAA (Pr), whereas all others were sensitive. Revertants of tsD9 to the ts+ phenotype simultaneously lost PAA resistance. Additional Pr mutants were isolated from ts mutants belonging to several complementation groups of HSV-1. Double mutants (ts Pr phenotype) were used in three-factor recombination analyses to locate the PAA locus on the genetic map at a position indistinguishable from the ts lesion in tsD9. In all cases, resistance or sensitivity to PAA in vivo was correlated with resistance or sensitivity of DNA polymerase in vitro. These data are compatible with the temperature-sensitive lesion of tsD9 and the determinant of PAA sensitivity both residing in the structural gene for DNA polymerase.</jats:p
Nonstructural proteins of herpes simplex virus. I. Purification of the induced DNA polymerase
Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.</jats:p
- …
