6 research outputs found

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p

    ­­Eleven tips for operational researchers working with health programmes: our experience based on implementing differentiated tuberculosis care in south India

    No full text
    Due to the workload and lack of a critical mass of trained operational researchers within their ranks, health systems and programmes may not be able to dedicate sufficient time to conducting operational research (OR). Hence, they may need the technical support of operational researchers from research/academic organisations. Additionally, there is a knowledge gap regarding implementing differentiated tuberculosis (TB) care in programme settings. In this ‘how we did it’ paper, we share our experience of implementing a differentiated TB care model along with an inbuilt OR component in Tamil Nadu, a southern state in India. This was a health system initiative through a collaboration of the State TB cell with the Indian Council of Medical Research institutes and the World Health Organisation country office in India. The learnings are in the form of eleven tips: four broad principles (OR on priority areas and make it a health system initiative, implement simple and holistic ideas, embed OR within routine programme settings, aim for long-term engagement), four related to strategic planning (big team of investigators, joint leadership, decentralised decision-making, working in advance) and three about implementation planning (conducting pilots, smart use of e-tools and operational research publications at frequent intervals). These may act as a guide for other Indian states, high TB burden countries that want to implement differentiated care, and for operational researchers in providing technical assistance for strengthening implementation and conducting OR in health systems and programmes (TB or other health programmes). Following these tips may increase the chances of i) an enriching engagement, ii) policy/practice change, and iii) sustainable implementation
    corecore