1,515 research outputs found

    Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves

    Get PDF
    Two formulations of quantum mechanics, inequivalent in the presence of closed timelike curves, are studied in the context of a soluable system. It illustrates how quantum field nonlinearities lead to a breakdown of unitarity, causality, and superposition using a path integral. Deutsch's density matrix approach is causal but typically destroys coherence. For each of these formulations I demonstrate that there are yet further alternatives in prescribing the handling of information flow (inequivalent to previous analyses) that have implications for any system in which unitarity or coherence are not preserved.Comment: 25 pages, phyzzx, CALT-68-188

    Breakdown of scaling in neutrino and electron scattering

    Get PDF
    Observation of deviations from scaling in the structure functions for deep-inelastic inclusive lepton-hadron scattering may provide a test of the hypothesis that the strong interactions are described by an asymptotically free field theory. Tests not involving additional assumptions are obtained for the combinations of structure functions F2 (ep)-F2 (en), F2 (ν)-F2 (ν), and xF3(ν or ν). Neutrino and electron scattering experiments are compared as possible tests of asymptotic freedom

    ρ\rho Polarization and `Model Independent' Extraction of Vub/Vcd|V_{ub}|/|V_{cd}| from DρνD\to\rho\ell\nu and BρνB\to\rho\ell\nu

    Full text link
    We briefly discuss the predictions of the heavy quark effective theory for the semileptonic decays of a heavy pseudoscalar to a light one, or to a light vector meson. We point out that measurement of combinations of differential helicity decay rates at Cleo-c and the BB factories can provide a model independent means of extracting the ratio Vub/Vcd|V_{ub}|/|V_{cd}|. We briefly discuss the corrections to this prediction.Comment: 8 pages, LaTeX, 1 figur

    Laryngeal features are phonetically abstract : mismatch negativity evidence from Arabic, English, and Russian

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Can a strongly interacting Higgs boson rescue SU(5)?

    Full text link
    Renormalization group analyses show that the three running gauge coupling constants of the Standard Model do not become equal at any energy scale. These analyses have not included any effects of the Higgs boson's self-interaction. In this paper, I examine whether these effects can modify this conclusion.Comment: 8 pages (plus 4 postscript figures

    Quantum Computational Complexity in the Presence of Closed Timelike Curves

    Full text link
    Quantum computation with quantum data that can traverse closed timelike curves represents a new physical model of computation. We argue that a model of quantum computation in the presence of closed timelike curves can be formulated which represents a valid quantification of resources given the ability to construct compact regions of closed timelike curves. The notion of self-consistent evolution for quantum computers whose components follow closed timelike curves, as pointed out by Deutsch [Phys. Rev. D {\bf 44}, 3197 (1991)], implies that the evolution of the chronology respecting components which interact with the closed timelike curve components is nonlinear. We demonstrate that this nonlinearity can be used to efficiently solve computational problems which are generally thought to be intractable. In particular we demonstrate that a quantum computer which has access to closed timelike curve qubits can solve NP-complete problems with only a polynomial number of quantum gates.Comment: 8 pages, 2 figures. Minor changes and typos fixed. Reference adde

    Quark Description of Hadronic Phases

    Get PDF
    We extend our proposal that major universality classes of hadronic matter can be understood, and in favorable cases calculated, directly in the microscopic quark variables, to allow for splitting between strange and light quark masses. A surprisingly simple but apparently viable picture emerges, featuring essentially three phases, distinguished by whether strangeness is conserved (standard nuclear matter), conserved modulo two (hypernuclear matter), or locked to color (color flavor locking). These are separated by sharp phase transitions. There is also, potentially, a quark phase matching hadronic K-condensation. The smallness of the secondary gap in two-flavor color superconductivity corresponds to the disparity between the primary dynamical energy scales of QCD and the much smaller energy scales of nuclear physics.Comment: 21 pages, 2 figure

    A Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and excited charmed baryon states

    Full text link
    We derive a Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and low-lying negative-parity excited charmed baryon states, in the heavy quark limit. We discuss the restriction from this sum rule on form factors and compare it with some models.Comment: 10 pages, RevTex, no figure, Alberta Thy--26--9
    corecore