270 research outputs found

    Identification of two new HMXBs in the LMC: a \sim2013 s pulsar and a probable SFXT

    Full text link
    We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period \sim2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power-law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties we classify both systems as SgXRBs: the 19th^{\rm th} confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    Risk Factors and Options to Improve Engraftment in Unrelated Cord Blood Transplantation

    Get PDF
    Use of umbilical unrelated cord-blood (UCB) cells as an alternative source of hematopoietic cell transplantation has been widely used mainly for patients lacking an HLA-matched donor. UCB present many advantages over bone marrow or mobilized peripheral blood from volunteer donors, such as rapid availability, absence of risk for the donor, and decreased incidence of acute graft-versus-host disease. However, a significant clinical problem is delayed engraftment that is directly correlated with the number of hematopoietic stem cells in a cord-blood unit. The identification of prognostic factors associated with engraftment that can be easily modified (e.g., strategies for donor choice) and the development of new approaches including use of multiple donors, intrabone injection of UCB, ex vivo expansion, and cotransplantation with accessory cells are of crucial importance in order to circumvent the problem of delayed engraftment after UCB transplantation. Those approaches may increase the quality and availability of UCB for transplantation

    Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane

    Get PDF
    summary:An existence and uniqueness theorem for solutions in the Banach space l1l_{1} of a nonlinear difference equation is given. The constructive character of the proof of the theorem predicts local asymptotic stability and gives information about the size of the region of attraction near equilibrium points

    Deciphering the properties of the central engine in GRB collapsars

    Get PDF
    The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model
    corecore