3,125 research outputs found

    Fast Radio Bursts

    Get PDF
    The discovery of radio pulsars over a half century ago was a seminal moment in astronomy. It demonstrated the existence of neutron stars, gave a powerful observational tool to study them, and has allowed us to probe strong gravity, dense matter, and the interstellar medium. More recently, pulsar surveys have led to the serendipitous discovery of fast radio bursts (FRBs). While FRBs appear similar to the individual pulses from pulsars, their large dispersive delays suggest that they originate from far outside the Milky Way and hence are many orders-of-magnitude more luminous. While most FRBs appear to be one-off, perhaps cataclysmic events, two sources are now known to repeat and thus clearly have a longer-lived central engine. Beyond understanding how they are created, there is also the prospect of using FRBs -- as with pulsars -- to probe the extremes of the Universe as well as the otherwise invisible intervening medium. Such studies will be aided by the high implied all-sky event rate: there is a detectable FRB roughly once every minute occurring somewhere on the sky. The fact that less than a hundred FRB sources have been discovered in the last decade is largely due to the small fields-of-view of current radio telescopes. A new generation of wide-field instruments is now coming online, however, and these will be capable of detecting multiple FRBs per day. We are thus on the brink of further breakthroughs in the short-duration radio transient phase space, which will be critical for differentiating between the many proposed theories for the origin of FRBs. In this review, we give an observational and theoretical introduction at a level that is accessible to astronomers entering the field.Comment: Invited review article for The Astronomy and Astrophysics Revie

    Fast Radio Bursts

    Get PDF
    The discovery of radio pulsars over a half century ago was a seminal moment in astronomy. It demonstrated the existence of neutron stars, gave a powerful observational tool to study them, and has allowed us to probe strong gravity, dense matter, and the interstellar medium. More recently, pulsar surveys have led to the serendipitous discovery of fast radio bursts (FRBs). While FRBs appear similar to the individual pulses from pulsars, their large dispersive delays suggest that they originate from far outside the Milky Way and hence are many orders-of-magnitude more luminous. While most FRBs appear to be one-off, perhaps cataclysmic events, two sources are now known to repeat and thus clearly have a longer-lived central engine. Beyond understanding how they are created, there is also the prospect of using FRBs -- as with pulsars -- to probe the extremes of the Universe as well as the otherwise invisible intervening medium. Such studies will be aided by the high implied all-sky event rate: there is a detectable FRB roughly once every minute occurring somewhere on the sky. The fact that less than a hundred FRB sources have been discovered in the last decade is largely due to the small fields-of-view of current radio telescopes. A new generation of wide-field instruments is now coming online, however, and these will be capable of detecting multiple FRBs per day. We are thus on the brink of further breakthroughs in the short-duration radio transient phase space, which will be critical for differentiating between the many proposed theories for the origin of FRBs. In this review, we give an observational and theoretical introduction at a level that is accessible to astronomers entering the field.Comment: Invited review article for The Astronomy and Astrophysics Revie

    Radiative cascades in charged quantum dots

    Full text link
    We measured, for the first time, two photon radiative cascades due to sequential recombination of quantum dot confined electron hole pairs in the presence of an additional spectator charge carrier. We identified direct, all optical cascades involving spin blockaded intermediate states, and indirect cascades, in which non radiative relaxation precedes the second recombination. Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure

    Low-speed aerodynamic characteristics of a 0.08-scale YF-17 airplane model at high angles of attack and sideslip

    Get PDF
    Data were obtained with and without the nose boom and with several strake configurations; also, data were obtained for various control surface deflections. Analysis of the results revealed that selected strake configurations adequately provided low Reynolds number simulation of the high Reynolds number characteristics. The addition of the boom in general tended to reduce the Reynolds number effects

    Low speed aerodynamic characteristics of an 0.075-scale F-15 airplane model at high angles of attack and sideslip

    Get PDF
    An 0.075 scale model representative of the F-15 airplane was tested in the Ames 12 foot pressure wind tunnel at a Mach number of 0.16 to determine static longitudinal and lateral directional characteristics at spin attitudes for Reynolds numbers from 1.48 to 16.4 million per meter (0.45 to 5.0 million per foot). Angles of attack ranged from 0 to +90 deg and from -40 deg to -80 deg while angles of sideslip were varied from -20 deg to +30 deg. Data were obtained for nacelle inlet ramp angles of 0 to 11 deg with the left and right stabilators deflected 0, -25 deg, and differentially 5 deg and -5 deg. The normal pointed nose and two alternate nose shapes were also tested along with several configurations of external stores. Analysis of the results indicate that at higher Reynolds numbers there is a slightly greater tendency to spin inverted than at lower Reynolds numbers. Use of a hemispherical nose in place of the normal pointed nose provided an over correction in simulating yawing moment effects at high Reynolds numbers

    Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics

    Full text link
    We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically, for the first time, that a quantum dot is not only a source of correlated non-classical monochromatic photons but is also a source of correlated non-classical \emph{multicolor} photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure

    Equilibrium Configurations of Homogeneous Fluids in General Relativity

    Full text link
    By means of a highly accurate, multi-domain, pseudo-spectral method, we investigate the solution space of uniformly rotating, homogeneous and axisymmetric relativistic fluid bodies. It turns out that this space can be divided up into classes of solutions. In this paper, we present two new classes including relativistic core-ring and two-ring solutions. Combining our knowledge of the first four classes with post-Newtonian results and the Newtonian portion of the first ten classes, we present the qualitative behaviour of the entire relativistic solution space. The Newtonian disc limit can only be reached by going through infinitely many of the aforementioned classes. Only once this limiting process has been consummated, can one proceed again into the relativistic regime and arrive at the analytically known relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference, accepted by MNRA

    Negative Komar Masses in Regular Stationary Spacetimes

    Get PDF
    A highly accurate multi-domain spectral method is used to study axially symmetric and stationary spacetimes containing a black hole or disc of dust surrounded by a ring of matter. It is shown that the matter ring can affect the properties of the central object drastically. In particular, by virtue of the ring's frame dragging, the so-called Komar mass of the black hole or disc can become negative. A continuous transition from such discs to such black holes can be found

    Negative Komar mass of single objects in regular, asymptotically flat spacetimes

    Get PDF
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. One type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have a negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative
    corecore