499 research outputs found

    A true-time-delay networks design technique

    Get PDF
    This paper proposes a technique to design wide band switched-line (SL) true-time-delay (TTD) networks, commonly used for phased array antenna (PAA) applications. This study investigates the constant-delay behavior of switched-line phase shifters based on single-pole double-throw (SPDT) switches. Circuit sizing starts by considering the effective S-parameters of the switches, to use their non-idealities as an integral part of the phase shift linearly dependent to the frequency and by considering, from the beginning, the possible spatial positioning of elements that allows the circuit feasibility as a design target. The aim of this study is to provide a technique suitable for the design of well-matched TTD networks with a flat delay in wide bandwidth. In this paper, we propose new design formulas for which we show a single-frequency implementation. A computational strategy is used to obtain numerical solutions of the derived equations with this study. Finally, a monolithic X-band TTD circuit example is shown

    Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor

    Full text link
    Surface characterizations of an organophosphorus (OP) gas detector based on chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteristics of the devices. KPFM measurements on FETs allow (i) to investigate the contact potential difference (CPD) distribution of the polarized device as function of the gate voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quantitative surface potential. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quantitatively consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor grafting, corresponding to a decrease of the work function, and a weaker variation after exposure to OP (between - 14 mV and - 61 mV) was measured. Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The OP molecules were essentially localized on the Si-NR confirming effectiveness and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201

    An Innovative Odd-Power Divider by means of a Triple FinLine Waveguide to Microstrip Transition

    Get PDF
    This paper outlines a novel approach to design a waveguide to microstrip finline transition that allows a division by three, of the RF power traveling inside a rectangular waveguide. The possibility of obtaining an odd power division of microwave and millimeter-wave signals with such finline transition is completely unexplored yet a harbinger of great opportunities. Starting from a 3D CAD model of the structure and continuing with electromagnetic simulations, the obtained results completely describe a transition able to achieve an almost perfect power splitting by three. Multyphisics simulations show an intrinsic resistance to vibrations of such transition, allowing it to be installed on aircraft or satellites modules. Thanks to this achievement, a totally new kind of power devices will come next, exploiting this odd power division. In fact, it will be possible to realize different types of microwave amplifiers, increasing the efficiency and decreasing the occupied size. To the author’s best knowledge, it is the first time a divider by three finline transition is reported in the literature

    Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells

    Get PDF
    Background Breast cancer\u2013endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells. Methods To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties. Results BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome \u3b25 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC. Conclusions and general significance BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behavior and properties

    Metabolic control of hyaluronan synthases

    Get PDF
    Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide \u3b2-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes

    Advanced Design of a Low Energy Electron Source

    Get PDF
    A multiphysics-based modeling design of a low energy electron source using a thermionic cathode is described in this paper. The proposed device produces a narrow beam employable in delicate applications where dimensions are critical. The effects of multiple physics influencing factors due to the cathode heating over the beam dynamics have been predicted through a multiphysics design approach. This paper would provide the needed knowledge for virtual prototyping of such devices. For this aim, several strategies have been adopted to obtain a simple model, which shows clearly the investigated mechanisms. According to this study, the appropriate materials and shapes can be chosen

    Hyaluronan: Biosynthesis and signaling

    Get PDF
    Background Hyaluronan is a critical component of extracellular matrix with several different roles. Besides the contribution to the tissue hydration, mechanical properties and correct architecture, hyaluronan plays important biological functions interacting with different molecules and receptors. Scope of review The review addresses the control of hyaluronan synthesis highlighting the critical role of hyaluronan synthase 2 in this context as well as discussing the recent findings related to covalent modifications which influence the enzyme activity. Moreover, the interactions with specific receptors and hyaluronan are described focusing on the importance of polymer size in the modulation of hyaluronan signaling. Major conclusions Due to its biological effects on cells recently described, it is evident how hyaluronan is to be considered not only a passive component of extracellular matrix but also an actor involved in several scenarios of cell behavior. General significance The effects of metabolism on the control of hyaluronan synthesis both in healthy and pathologic conditions are critical and still not completely understood. The hyaluronan capacity to bind several receptors triggering specific pathways may represent a valid target for new approach in several therapeutic strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties

    The role of the multifaceted long non-coding RNAs: A nuclear-cytosolic interplay to regulate hyaluronan metabolism

    Get PDF
    In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour

    Magnetron High Power System Design

    Get PDF
    This paper describes the design of an X-Band Magnetron to Linear Accelerator (LINAC) High Power Transfer System consisting in an 8 resonant cavities Magnetron connected to a dedicated vacuum Dielectric Window (DW). A main analytical design of devices is shown with compact formulas and is followed by numerical optimization. Electromagnetic and Thermomechanical coupling between these devices is described, particular attention has been given to the Magnetron power coupling and DW matching. A Multiphysics modeling is proposed to consider thermal-structural effects due to the cathode heating for the Magnetron and the Joule effect for the DW. Thermal induced degradation of the device performances are estimated and proper materials and shapes are chosen in order to ensure the desired behavior of the system in operative conditions. The proposed study provided the evaluation of the Magnetron Working Points and DW Scattering parameters in Thermo-mechanical operative conditions. Technological strategies for device coupling are shown

    The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer

    Get PDF
    Purpose: Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods: Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results: HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion: In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor
    • …
    corecore