509 research outputs found

    Critique of the Bellman Police Service Rating Scale

    Get PDF

    Scale to Measure Effectiveness of Police Functioning

    Get PDF

    Critique of the Bellman Police Service Rating Scale

    Get PDF

    Measuring the Severity of the Third Degree

    Get PDF

    Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Full text link
    Surface sensitive synchrotron-X-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3L_3 Cs+^+ resonance, we provide, for the first time, spatial counterion distributions (Cs+^+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3_3O+^+ at the interface leads to proton-transfer back to the phosphate group by a high contact-potential, whereas high salt concentrations lower the contact-potential resulting in proton-release and increased surface charge-density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions

    The IkB kinase inhibitor nuclear factor-kB essential modulator–binding domain peptide for inhibition of balloon injury-induced neointimal formation

    Get PDF
    Objective—The activation of nuclear factor-kB (NF-kB) is a crucial step in the arterial wall’s response to injury. The identification and characterization of the NF-kB essential modulator– binding domain (NBD) peptide, which can block the activation of the IkB kinase complex, have provided an opportunity to selectively abrogate the inflammation-induced activation of NF-kB. The aim of the present study was to evaluate the effect of the NBD peptide on neointimal formation.<br></br> Methods and Results—In the rat carotid artery balloon angioplasty model, local treatment with the NBD peptide (300 microg/site) significantly reduced the number of proliferating cells at day 7 (by 40%; P<0.01) and reduced injury-induced neointimal formation (by 50%; P<0.001) at day 14. These effects were associated with a significant reduction of NF-kB activation and monocyte chemotactic protein-1 expression in the carotid arteries of rats treated with the peptide. In addition, the NBD peptide (0.01 to 1 micromol/L) reduced rat smooth muscle cell proliferation, migration, and invasion in vitro. Similar results were observed in apolipoprotein E-/-, mice in which the NBD peptide (150 microg/site) reduced wire-induced neointimal formation at day 28 (by 47%; P<0.01).<br></br> Conclusion—The NBD peptide reduces neointimal formation and smooth muscle cell proliferation/migration, both effects associated with the inhibition of NF-kB activation

    The Impact of Climate Change on Fertility

    Get PDF
    Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the ‘critical thermal limit’ (CTL). However, this overlooks important sublethal impacts of temperature that could affect species’ persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism’s lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the ‘thermal fertility limit’ (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts

    Microstructure formation in electrodeposited Co-Cu/Cu multilayers with GMR effect: influence of current density during the magnetic layer deposition

    Get PDF
    The influence of the current density applied during the deposition of the magnetic layers on the microstructure formation in electrodeposited Co-Cu/Cu multilayers and on their giant magnetoresistance (GMR) was investigated using a combination of magnetoresistance measurements, wide-angle and small-angle X-ray scattering, high-resolution transmission electron microscopy, atomic force microscopy and chemical analysis. The magnetoresistance measurements revealed that a reduction of the current density stimulates a transition from the formation of the magnetic layers with predominantly ferromagnetic character to the formation of superparamagnetic regions. As based on electrochemical considerations, it was supposed that such a change in the magnetic properties can be caused by an increased amount of Cu codeposited with Co at low current densities. It turned out from the structural studies that a pronounced segregation of Co and Cu occurs at low current densities. In accordance with their very low mutual solubility at room temperature, no atomic scale intermixing of Co and Cu could be detected. The segregation of Cu and Co was related to the fragmentation of the magnetic layers, to the enhancement of the local lattice strains, to the increase of the interface corrugations, to the partial loss of the multilayer periodicity and finally to the formation of Co precipitates in the Cu matrix
    • …
    corecore