1,037 research outputs found

    Effects of doping on thermally excited quasiparticles in the high-TcT_c superconducting state

    Full text link
    The physical properties of low energy superconducting quasiparticles in high- TcT_c superconductors are examined using magnetic penetration depth and specific heat experimental data. We find that the low energy density of states of quasiparticles of La2−x_{2-x}Srx_xCuO4_4 scales with (x−xc)/Tc(x-x_c)/T_c to the leading order approximation, where xcx_c is the critical doping concentration below which Tc=0T_c=0. The linear temperature term of the superfluid density is renormalized by quasiparticle interactions and the renormalization factor times the Fermi velocity is found to be doping independent.Comment: 3 pages, 3 figures, minor change to the content, fig1 is reploted, to appear in Phys Rev

    Lattice effects in the La2−x_{\rm 2-x}Srx_{\rm x}CuO4_{\rm 4} compounds

    Full text link
    Systematic Raman studies on several cuprates (YBa2_{\rm 2}Cu3_{\rm 3}Ox_{\rm x}, YBa2_{\rm 2}Cu4_{\rm 4}O8_{\rm 8} or Bi2_{\rm 2}Sr2_{\rm 2}CaCu2_{\rm 2}O8_{\rm 8}) have shown that at optimal doping the compounds are at the edge of lattice instability; once this level is exceeded, by means of doping or applying external hydrostatic pressure, the changes in the transition temperature are accompanied by spectral modifications. There are strong indications that the reduction in Tc_{\rm c} is correlated with a separation into nanoscale phases, which involve the oxygen atoms of the CuO2_{\rm 2} planes. In this work, modifications with doping in the Raman spectra of the La2−x_{\rm 2-x}Srx_{\rm x}CuO4_{\rm 4} compound are presented, which show that spin or charge ordering is coupled with lattice distortions in the whole doping region.Comment: 6 pages, 6 figure

    Penetration Depth Measurements in MgB_2: Evidence for Unconventional Superconductivity

    Full text link
    We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field acac-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.Comment: 4 pages 3 figure

    Systematic behaviour of the in-plane penetration depth in d-wave cuprates

    Full text link
    We report the temperature T and oxygen concentration dependences of the penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3 and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane \lambda_{c}(0) penetration depths, the low temperature linear term in \lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to increase with increasing δ\delta. The systematic changes of the linear term in \lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1} Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure

    Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3

    Full text link
    We report on the electronic properties of superlattices composed of three different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3 substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn 2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly originating from Mn e_g electrons. Furthermore, the density of states near the Fermi energy and the magnetization obey a similar temperature dependence, suggesting a correlation between the spin and charge degrees of freedom at the interfaces of these oxides
    • …
    corecore