60 research outputs found

    Mineralogical attenuation for metallic remediation in a passive system for mine water treatment

    Get PDF
    Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes. This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands. The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate. Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 ÎŒm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study. The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes

    No full text
    Solubility experiments were performed on nanocrystalline scorodite and amorphous ferric arsenate. Nanocrystalline scorodite occurs as stubby prismatic crystals measuring about 50 nm and having a specific surface area of 39.88 ± 0.07 m2/g whereas ferric arsenate is amorphous and occurs as aggregated clusters measuring about 50–100 nm with a specific surface area of 17.95 ± 0.19 m2/g. Similar to its crystalline counterpart, nanocrystalline scorodite has a solubility of about 0.25 mg/L at around pH 3–4 but has increased solubilities at low and high pH (i.e. 6). Nanocrystalline scorodite dissolves incongruently at about pH > 2.5 whereas ferric arsenate dissolution is incongruent at all the pH ranges tested (pH 2–5). It appears that the solubility of scorodite is not influenced by particle size. The dissolution rate of nanocrystalline scorodite is 2.64 × 10−10 mol m−2 s−1 at pH 1 and 3.25 × 10−11 mol m−2 s−1 at pH 2. These rates are 3–4 orders of magnitude slower than the oxidative dissolution of pyrite and 5 orders of magnitude slower than that of arsenopyrite. Ferric arsenate dissolution rates range from 6.14 × 10−9 mol m−2 s−1 at pH 2 to 1.66 × 10−9 mol m−2 s−1 at pH 5. Among the common As minerals, scorodite has the lowest solubility and dissolution rate. Whereas ferric arsenate is not a suitable compound for As control in mine effluents, nanocrystalline scorodite that can be easily precipitated at ambient pressure and temperature conditions would be satisfactory in meeting the regulatory guidelines at pH 3–4

    Aqueous solubility of Cr(VI) compounds in ferrochrome bag filter dust and the implications thereof

    Get PDF
    The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that the currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≀ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alik

    Arsenic species formed from arsenopyrite weathering along a contamination gradient in circumneutral river floodplain soils

    No full text
    Arsenic is a toxic trace element, which commonly occurs as contaminant in riverine floodplains and associated wetlands affected by mining and ore processing. In this study, we investigated the solid-phase speciation of As in river floodplain soils characterized by circumneutral pH (5.7–7.1) and As concentrations of up to 40.3 g/kg caused by former mining of arsenopyrite-rich ores. Soil samples collected in the floodplain of Ogosta River (Bulgaria) were size-fractionated and subsequently analyzed using a combination of X-ray fluorescence (XRF) spectrometry, powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and selective chemical extraction of poorly crystalline mineral phases. Arsenic and Fe were found to be spatially correlated and both elements were strongly enriched in the fine soil particle size fractions (<2 ÎŒm and 2–50 ÎŒm). Between 14 and 82% of the total As was citrate-ascorbate extractable. Molar As/Fe ratios were as high as 0.34 in the bulk soil extracts and increased up to 0.48 in extracts of the fine particle size fractions. Arsenic K-edge XAS spectra showed the predominance of As(V) and were well fitted with a reference spectrum of As(V) adsorbed to ferrihydrite. Whereas no As(III) was detected, considerable amounts of As(-I) were present and identified as arsenopyrite originating from the mining waste. Iron K-edge XAS revealed that in addition to As(V) adsorbed to ferrihydrite, X-ray amorphous As(V)-rich hydrous ferric oxides (“As-HFO”) with a reduced number of corner-sharing FeO6 octahedra relative to ferrihydrite were the dominating secondary As species in the soils. The extremely high concentrations of As in the fine particle size fractions (up to 214 g/kg) and its association with poorly crystalline Fe(III) oxyhydroxides and As-HFO phases suggest a high As mobilization potential under both oxic and anoxic conditions, as well as a high bioaccessibility of As upon ingestion, dermal contact, or inhalation by humans or animals
    • 

    corecore