95,741 research outputs found
Type-I superconductivity in noncentrosymmetric superconductor AuBe
The noncentrosymmetric superconductor AuBe have been investigated using the
magnetization, resistivity, specific heat, and muon-spin relaxation/rotation
measurements. AuBe crystallizes in the cubic FeSi-type B20 structure with
superconducting transition temperature observed at = 3.2 0.1 K.
The low-temperature specific heat data, (T), indicate a weakly-coupled
fully gapped BCS superconductivity with an isotropic energy gap
2 = 3.76, which is close to the BCS value of 3.52.
Interestingly, type-I superconductivity is inferred from the SR
measurements, which is in contrast with the earlier reports of type-II
superconductivity in AuBe. The Ginzburg-Landau parameter is = 0.4
1/. The transverse-field SR data transformed in the maximum
entropy spectra depicting the internal magnetic field probability distribution,
P(H), also confirms the absence of the mixed state in AuBe. The thermodynamic
critical field, , calculated to be around 259 Oe. The zero-field SR
results indicate that time-reversal symmetry is preserved and supports a
spin-singlet pairing in the superconducting ground state.Comment: 9 pages, 9 figure
Properties of KCoAs and Alloys with Fe and Ru: Density Functional Calculations
Electronic structure calculations are presented for KCoAs and alloys
with KFeAs and KRuAs. These materials show electronic
structures characteristic of coherent alloys, with a similar Fermi surface
structure to that of the Fe-based superconductors, when the electron count
is near six per transition metal. However, they are less magnetic than the
corresponding Fe compounds. These results are discussed in relation to
superconductivity.Comment: 5 page
Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys
Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site
driven ferroelectricity, even though the average tolerance factor is
significantly smaller than unity and there is no stereochemically active A-site
ion. This is due to the frustration of tilt instabilities by A-site disorder.
There are very large off-centerings of the Li ions, which contribute strongly
to the anisotropy between the tetragonal and rhombohedral ferroelectric states,
yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure
Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites
The prospects for high thermoelectric performance in phosphide skutterudites
are investigated based on first principles calculations. We find that
stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in
that it is metallic. As such the band structure must be modified if high
thermopowers are to be achieved. In analogy to the antimonides it is expected
that this may be done by filling with La. Calculations for LaFe_4P_12 show that
a gap can in fact be opened by La filling, but that the valence band is too
light to yield reasonable p-type thermopowers at appropriate carrier densities;
n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl
A characterization of the central shell-focusing singularity in spherical gravitational collapse
We give a characterization of the central shell-focusing curvature
singularity that can form in the spherical gravitational collapse of a bounded
matter distribution obeying the dominant energy condition. This
characterization is based on the limiting behaviour of the mass function in the
neighbourhood of the singularity. Depending on the rate of growth of the mass
as a function of the area radius R, the singularity may be either covered or
naked. The singularity is naked if this growth rate is slower than R, covered
if it is faster than R, and either naked or covered if the growth rate is same
as R.Comment: 12 pages, Latex, significantly revised version, including change of
title. Revised version to appear in Classical and Quantum Gravit
Eta-nucleon and eta-prime-nucleon coupling constants in QCD and the role of gluons
Coupling constants of and mesons with nucleons have
been calculated using the method of QCD sum rules. Starting from
vacuum-to-meson correlation function of interpolating fields of two nucleons,
its matrix element with respect to nucleon spinors has been considered.
Coupling constants at the physical points have been estimated from
extrapolation of results obtained at two other points. Anomalous glue has been
found to give substantial contribution to the coupling constants and also
accounts for a significant OZI-rule violation.Comment: 6 pages, 3 figures and 2 table
- …
