15,101,736 research outputs found

    Higher order effects in the 16O(d,p)17O^{16}O(d,p)^{17}O and 16O(d,n)17F^{16}O(d,n)^{17}F transfer reactions

    Get PDF
    Full Coupled Channels Calculations were performed for the 16O(d,n)17F^{16}O(d,n)^{17}F and 16O(d,p)17O^{16}O(d,p)^{17}O transfer reactions at several deuteron incident energies from Elab=2.29E_{lab}=2.29 MeV up to 3.27 MeV. A strong polarization effect between the entrance channel and the transfer channels 16O(d,n)17F(1/2+,0.495)^{16}O(d,n)^{17}F(1/2^{+},0.495) and 16O(d,p)17O(1/2+,0.87)^{16}O(d,p)^{17}O(1/2^{+},0.87) was observed. This polarization effect had to be taken into account in order to obtain realistic spectroscopic factors from these reactions.Comment: 15 papes, 13 figures, accepted for publication in Phys. Rev.

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point pPp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)11/(d1)log2/(d1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n11/(d1)k1/d(d1)log2/(d1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains wn/2w \leq n/2 points of PP on one side, crosses O(n11/(d1)w1/d(d1)log2/(d1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nloglogn)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n11/(d1)k1/d(d1)(log(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    Improved Online Algorithm for Weighted Flow Time

    Full text link
    We discuss one of the most fundamental scheduling problem of processing jobs on a single machine to minimize the weighted flow time (weighted response time). Our main result is a O(logP)O(\log P)-competitive algorithm, where PP is the maximum-to-minimum processing time ratio, improving upon the O(log2P)O(\log^{2}P)-competitive algorithm of Chekuri, Khanna and Zhu (STOC 2001). We also design a O(logD)O(\log D)-competitive algorithm, where DD is the maximum-to-minimum density ratio of jobs. Finally, we show how to combine these results with the result of Bansal and Dhamdhere (SODA 2003) to achieve a O(log(min(P,D,W)))O(\log(\min(P,D,W)))-competitive algorithm (where WW is the maximum-to-minimum weight ratio), without knowing P,D,WP,D,W in advance. As shown by Bansal and Chan (SODA 2009), no constant-competitive algorithm is achievable for this problem.Comment: 20 pages, 4 figure
    corecore