992 research outputs found

    Microwave ISM Emission Observed by WMAP

    Full text link
    We investigate the nature of the diffuse Galactic emission in the Wilkinson Microwave Anisotropy Probe (WMAP) temperature anisotropy data. Substantial dust-correlated emission is observed at all WMAP frequencies, far exceeding the expected thermal dust emission in the lowest frequency channels (23, 33, 41 GHz). The WMAP team (Bennett et al.) interpret this emission as dust-correlated synchrotron radiation, attributing the correlation to the natural association of relativistic electrons produced by SNae with massive star formation in dusty clouds, and deriving an upper limit of 5% on the contribution of Draine & Lazarian spinning dust at K-band (23 GHz). We pursue an alternative interpretation that much, perhaps most, of the dust-correlated emission at these frequencies is indeed spinning dust, and explore the spectral dependence on environment by considering a few specific objects as well as the full sky average. Models similar to Draine & Lazarian spinning dust provide a good fit to the full-sky data. The full-sky fit also requires a significant component with free-free spectrum uncorrelated with \Halpha, possibly hot (~million K) gas within 30 degrees of the Galactic center.Comment: ApJ in press (accepted 5 Dec 2003), version 2: corrected typos and added references. 23 pages, 5 figures, 2 tables. Free-free haze map is available at http://skymaps.inf

    Pseudo-Dipole Signal Removal from WMAP Data

    Full text link
    It is discovered in our previous work that different observational systematics, e.g., errors of antenna pointing directions, asynchronous between the attitude and science data, can generate pseudo-dipole signal in full-sky maps of the cosmic microwave background (CMB) anisotropy published by The Wilkinson Microwave Anisotropy Probe (WMAP) team. Now the antenna sidelobe response to the Doppler signal is found to be able to produce similar effect as well. In this work, independent to the sources, we uniformly model the pseudo-dipole signal and remove it from published WMAP7 CMB maps by model fitting. The result demonstrates that most of the released WMAP CMB quadrupole is artificial.Comment: V3: using WMAP7 dat

    The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?

    Full text link
    SDSS J080434.20+510349.2 is the WZ type binary that displayed rare outburst in 2006 (Pavlenko et al., 2007). During the long-lasting tail of the late stage of the outburst binary shown the two-humped or four-humped profile of the orbital light modulation. The amplitude of orbital light curve decreased while the mean brightness decreased, more over that occurred \sim 10 times faster during the fast outburst decline in respect to the late quiet state of slow outburst fading. There were no white dwarf pulsations detected neither 1 - 1.5 months prior to the outburst nor in 1.5 - 2 months after the 2006 outburst in this system. However the strong non-radial pulsations with period 12.6 minutes and mean amplitude of 0.05^m were first detected in V band with 2.6-m Shajn mirror telescope of the Crimean astrophysical observatory in ~ 8 months after the outburst. The evolution of pulsations over two years in 2006 - 2008 is considered. It is supposed that pulsations first appeared when the cooling white dwarf (after the outburst) entered the instability strip although the possibility of temporary lack of pulsations at some occasions also could not be excluded.Comment: Submitted to Proceedings of 16th European White Dwarf Workshop (EUROWD08

    Detecting Dark Matter Annihilation with CMB Polarization : Signatures and Experimental Prospects

    Full text link
    Dark matter (DM) annihilation during hydrogen recombination (z ~ 1000) will alter the recombination history of the Universe, and affect the observed CMB temperature and polarization fluctuations. Unlike other astrophysical probes of DM, this is free of the significant uncertainties in modelling galactic physics, and provides a method to detect and constrain the cosmological abundances of these particles. We parametrize the effect of DM annihilation as an injection of ionizing energy at a rate e_{dm}, and argue that this simple "on the spot'' modification is a good approximation to the complicated interaction of the annihilation products with the photon-electron plasma. Generic models of DM do not change the redshift of recombination, but change the residual ionization after recombination. This broadens the surface of last scattering, suppressing the temperature fluctuations and enhancing the polarization fluctuations. We use the temperature and polarization angular power spectra to measure these deviations from the standard recombination history, and therefore, indirectly probe DM annihilation. (abridged)Comment: 13 pages, 8 figures, submitted to PR

    Synthesizing Finite-state Protocols from Scenarios and Requirements

    Full text link
    Scenarios, or Message Sequence Charts, offer an intuitive way of describing the desired behaviors of a distributed protocol. In this paper we propose a new way of specifying finite-state protocols using scenarios: we show that it is possible to automatically derive a distributed implementation from a set of scenarios augmented with a set of safety and liveness requirements, provided the given scenarios adequately \emph{cover} all the states of the desired implementation. We first derive incomplete state machines from the given scenarios, and then synthesis corresponds to completing the transition relation of individual processes so that the global product meets the specified requirements. This completion problem, in general, has the same complexity, PSPACE, as the verification problem, but unlike the verification problem, is NP-complete for a constant number of processes. We present two algorithms for solving the completion problem, one based on a heuristic search in the space of possible completions and one based on OBDD-based symbolic fixpoint computation. We evaluate the proposed methodology for protocol specification and the effectiveness of the synthesis algorithms using the classical alternating-bit protocol.Comment: This is the working draft of a paper currently in submission. (February 10, 2014

    Early-type galaxies in the SDSS. II. Correlations between observables

    Get PDF
    A magnitude limited sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. The sample was used to study how early-type galaxy observables, including luminosity L, effective radius R_o, surface brightness I_o, color, and velocity dispersion sigma, are correlated with one another. Measurement biases are understood with mock catalogs which reproduce all of the observed scaling relations and their dependences on fitting technique. At any given redshift, the intrinsic distribution of luminosities, sizes and velocity dispersions in our sample are all approximately Gaussian. A maximum likelihood analysis shows that sigma ~ L^{0.25\pm 0.012}, R_o ~ L^{0.63\pm 0.025}, and R_o ~ I^{-0.75\pm 0.02} in the r* band. In addition, the mass-to-light ratio within the effective radius scales as M_o/L ~ L^{0.14\pm 0.02} or M_o/L ~ M_o^{0.22\pm 0.05}, and galaxies with larger effective masses have smaller effective densities: Delta_o ~ M_o^{-0.52\pm 0.03}. These relations are approximately the same in the g*, i* and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only little, with more evolution in the bluer bands. The luminosity function is consistent with weak passive luminosity evolution and a formation time of about 9 Gyrs ago.Comment: 29 pages, 11 figures. Accepted by AJ (scheduled for April 2003). This paper is part II of a revised version of astro-ph/011034

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus
    corecore