203 research outputs found
Detectors and cryostat design for the SuMIRe Prime Focus Spectrograph (PFS)
We describe the conceptual design of the camera cryostats, detectors, and
detector readout electronics for the SuMIRe Prime Focus Spectrograph (PFS)
being developed for the Subaru telescope. The SuMIRe PFS will consist of four
identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic
positioner at the prime focus. Each spectrograph will have three channels
covering wavelength ranges 3800 {\AA} - 6700 {\AA}, 6500 {\AA} - 10000 {\AA},
and 9700 {\AA} - 13000 {\AA}, with the dispersed light being imaged in each
channel by a f/1.10 vacuum Schmidt camera. In the blue and red channels a pair
of Hamamatsu 2K x 4K edge-buttable CCDs with 15 um pixels are used to form a 4K
x 4K array. For the IR channel, the new Teledyne 4K x 4K, 15 um pixel,
mercury-cadmium-telluride sensor with substrate removed for short-wavelength
response and a 1.7 um cutoff will be used. Identical detector geometry and a
nearly identical optical design allow for a common cryostat design with the
only notable difference being the need for a cold radiation shield in the IR
camera to mitigate thermal background. This paper describes the details of the
cryostat design and cooling scheme, relevant thermal considerations and
analysis, and discusses the detectors and detector readout electronics
Prime Focus Spectrograph - Subaru's future -
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and
Redshifts (SuMIRe) project has been endorsed by Japanese community as one of
the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea,
Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology
with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution.
Taking advantage of Subaru's wide field of view, which is further extended with
the recently completed Wide Field Corrector, PFS will enable us to carry out
multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A
microlens is attached at each fiber entrance for F-ratio transformation into a
larger one so that difficulties of spectrograph design are eased. Fibers are
accurately placed onto target positions by positioners, each of which consists
of two stages of piezo-electric rotary motors, through iterations by using
back-illuminated fiber position measurements with a wide-field metrology
camera. Fibers then carry light to a set of four identical fast-Schmidt
spectrographs with three color arms each: the wavelength ranges from 0.38
{\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving
power of 3000. Before and during the era of extremely large telescopes, PFS
will provide the unique capability of obtaining spectra of 2400
cosmological/astrophysical targets simultaneously with an 8-10 meter class
telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil,
Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and
NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne
Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki
Takami, Editors, Proc. SPIE 8446 (2012)
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
Immunization with the Haemophilus ducreyi Hemoglobin Receptor HgbA with Adjuvant Monophosphoryl Lipid A Protects Swine from a Homologous but Not a Heterologous Challenge
Haemophilus ducreyi, the etiological agent of chancroid, has a strict requirement for heme, which it acquires from its only natural host, humans. Previously, we showed that a vaccine preparation containing the native hemoglobin receptor HgbA purified from H. ducreyi class I strain 35000HP (nHgbAI) and administered with Freund's adjuvant provided complete protection against a homologous challenge. In the current study, we investigated whether nHgbAI dispensed with monophosphoryl lipid A (MPL), an adjuvant approved for use in humans, offered protection against a challenge with H. ducreyi strain 35000HP expressing either class I or class II HgbA (35000HPhgbAI and 35000HPhgbAII, respectively). Pigs immunized with the nHgbAI/MPL vaccine were protected against a challenge from homologous H. ducreyi strain 35000HPhgbAI but not heterologous strain 35000HPhgbAII, as evidenced by the isolation of only strain 35000HPhgbAII from nHgbAI-immunized pigs. Furthermore, histological analysis of the lesions showed striking differences between mock-immunized and nHgbAI-immunized animals challenged with strains 35000HPhgbAI but not those challenged with strain 35000HPhgbAII. Mock-immunized pigs were not protected from a challenge by either strain. The enzyme-linked immunosorbent assay (ELISA) activity of the nHgbAI/MPL antiserum was lower than the activity of antiserum from animals immunized with the nHgbAI/Freund's vaccine; however, anti-nHgbAI from both studies bound whole cells of 35000HPhgbAI better than 35000HPhgbAII and partially blocked hemoglobin binding to nHgbAI. In conclusion, despite eliciting lower antibody ELISA activity than the nHgbAI/Freund's, the nHgbAI/MPL vaccine provided protection against a challenge with homologous but not heterologous H. ducreyi, suggesting that a bivalent HgbA vaccine may be needed
Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation
A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer-
ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs
Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex
Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and alpha3beta1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections.We demonstrate that alpha-D-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl alpha-D-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl alpha-D-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl alpha-D-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Man alpha1,3Man beta1,4GlcNAc beta1,4GlcNAc in an extended binding site. The interactions along the alpha1,3 glycosidic bond and the first beta1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl alpha-D-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group.The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection
Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber
spectrograph with 2394 science fibers, which are distributed in 1.3 degree
diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide
wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000,
strengthens its ability to target three main survey programs: cosmology,
Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with
resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply
exchanging dispersers. PFS takes the role for the spectroscopic part of the
Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam
works on the imaging part. To transform the telescope plus WFC focal ratio, a
3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip.
A higher transmission fiber is selected for the longest part of cable system,
while one with a better FRD performance is selected for the fiber-positioner
and fiber-slit components, given the more frequent fiber movements and tightly
curved structure. Each Fiber positioner consists of two stages of
piezo-electric rotary motors. Its engineering model has been produced and
tested. Fiber positioning will be performed iteratively by taking an image of
artificially back-illuminated fibers with the Metrology camera located in the
Cassegrain container. The camera is carefully designed so that fiber position
measurements are unaffected by small amounts of high special-frequency
inaccuracies in WFC lens surface shapes. Target light carried through the fiber
system reaches one of four identical fast-Schmidt spectrograph modules, each
with three arms. Prototype VPH gratings have been optically tested. CCD
production is complete, with standard fully-depleted CCDs for red arms and
more-challenging thinner fully-depleted CCDs with blue-optimized coating for
blue arms.Comment: 14 pages, 12 figures, submitted to "Ground-based and Airborne
Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki
Takami, Editors, Proc. SPIE 9147 (2014)
- …