76 research outputs found

    Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica.

    Full text link
    Processing and secretion of the alkaline extracellular protease (AEP) from the yeast Yarrowia lipolytica was studied by pulse-chase and immunoprecipitation experiments. Over half of newly synthesized AEP was secreted by 6 min. Over 99% of AEP activity which was external to the cytoplasmic membrane was located in the supernatant medium. Polypeptides of 55, 52, 44, 36, and 32 kilodaltons (55K, 52K, 44K, 36K, and 32K polypeptides) were immunoprecipitated from [3H]leucine-labeled cell extracts by rabbit antibodies raised against mature, secreted AEP (32K polypeptide). Experiments with tunicamycin and endoglycosidase H indicated that the 55K, 52K, and 44K polypeptides contained about 2 kilodaltons of N-linked oligosaccharide and that the 36K and 32K polypeptides contained none. Results of pulse-chase experiments did not fit a simple precursor-product relationship of 55K----52K----44K----36K----32K. In fact, maximum labeling intensity of the 52K polypeptide occurred later than for the 44K and 36K polypeptides. Secretion of polypeptides of 19 and 20 kilodaltons derived from the proregion of AEP indicated that one major processing pathway was 55K----52K----32K. The gene coding for AEP (XPR2) was cloned and sequenced. The sequence and the immunoprecipitation results suggest that AEP is originally synthesized with an additional preproI-proII-proIII amino-terminal region. Processing definitely involves cleavage(s) after pairs of basic amino acids and the addition of one N-linked oligosaccharide. Signal peptidase cleavage, dipeptidyl aminopeptidase cleavages, and at least one additional proteolytic cleavage may also be involved.</jats:p

    Extracellular RNase produced by Yarrowia lipolytica.

    No full text
    Production of extracellular RNase(s) by Yarrowia lipolytica CX161-1B was examined in media between pHs 5 and 7. RNase production occurred during the exponential growth phase. High-molecular-weight nitrogen compounds supported the highest levels of RNase production. Several RNases were detected in the supernatant medium. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the RNases had estimated molecular weights of 45,000, 43,000, and 34,000. It was found that Y. lipolytica secretes only one RNase (the 45,000-molecular-weight RNase) and that the 43,000 and 34,000-molecular-weight RNases are degradation products of this RNase. The alkaline extracellular protease secreted by Y. lipolytica was shown to have a major role in the 45,000- to 43,000-molecular-weight conversion, and it was demonstrated that the 45,000-molecular-weight RNase could be purified from a mutant which does not produce the alkaline extracellular protease. Purification of the RNase from a wild-type strain resulted in purification of the 43,000-molecular-weight RNase. This RNase was a glycoprotein with a molecular weight of 44,000 as estimated by gel filtration, an isoelectric point of pH 4.8, and a pH optimum between 6.5 and 7.0

    Chitinase-overproducing mutant of Serratia marcescens

    Full text link
    Genetic modification of Serratia marcescens QMB1466 was undertaken to isolated mutants which produce increased levels of chitinolytic activity. After mutagenesis with ultraviolet light, ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, 19,940 colonies were screened for production of enlarged zones of clearing (indicative of chitinase activity) on chitin-containing agar plates. Forty-four chitinase high producers were tested further in shake flask cultures. Mutant IMR-1E1 was isolated which, depending on medium composition, produced two to three times more than the wild type of the other components of the chitinolytic enzyme system--a factor involved in the hydrolysis of crystalline chitin and chitobiase. After induction by chitin, endochitinase and chitobiase activity appeared at similar times for both IMR-1E1 and QMB1466, suggesting possible coordinate control of these enzymes. The results are consistent with IMR-1E1 containing a regulatory mutation which increased production of the components of the chitinolytic enzyme system and/or with IMR-1E1 containing a tandem duplication of the chitinase genes. The high rate of reversion of IMR-1E1 to decreased levels of chitinase production suggests that the overproduction of chitinase by IMR-1E1 is due to a tandem gene duplication.</jats:p

    Extracellular acid proteases produced by Saccharomycopsis lipolytica

    Full text link
    Saccharomycopsis lipolytica CX161-1B produced at least three extracellular acid proteases during exponential growth in medium containing glycerol, Difco Proteose Peptone, and mineral salts at pH 3.4 (Difco Laboratories, Detroit, Mich.). Little extracellular acid protease activity was produced with glutamic acid as the sole nitrogen source, somewhat higher levels were obtained with peptone, and much higher levels were obtained with Difco Proteose Peptone. The relative amounts of the three proteases varied during growth on Difco Proteose Peptone, which suggested that the proteases were not coordinately regulated. The proteases were purified to near homogeneity (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) by use of ultrafiltration, gel filtration, and DEAE-Sephacel and hydroxylapatite chromatography. Protease I had a molecular weight near 28,000, an isoelectric point of pH 4.9, and a pH optimum of 3.5. Protease II had a molecular weight near 32,000 and a pH optimum of 4.2. Protease III had a molecular weight near 36,000, an isoelectric point of 3.8, and a pH optimum of 3.1. All three proteases were glycoproteins; proteases I, II, and III contained 25, 12, and 1.2% carbohydrate, respectively. The proteases were inhibited by pepstatin and 1,2-epoxy-3-(4-nitrophenoxy) propane and were largely insensitive to diazoacetyl-DL-norleucine methylester and to compounds which inhibit the serine, sulfhydryl, or metallo-proteases.</jats:p
    corecore