156 research outputs found

    Effect of adenosine 5'-monophosphate on adenosine 5'-triphosphate activation of methyl coenzyme M methylreductase in cell extracts of Methanosarcina barkeri

    Full text link
    In cell extracts of Methanosarcina barkeri, adenosine 5'-triphosphate (ATP)-activated methyl coenzyme M methylreductase was inhibited by adenosine 5'-monophosphate (AMP) but not by cyclic AMP. AMP (2 and 4 mM) shifted the saturation curve for ATP activation from hyperbolic (Hill coefficient [n] = 1.0) to sigmoidal (n = 1.5), decreased Vmax, and increased the apparent KmATP.</jats:p

    Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    No full text
    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding aldehydes of the alcohols tested. The Km for methanol was 50 microM, and that for the aromatic alcohols was in the range of 1 to 2 mM. EDTA and p-nitrophenylhydrazine, which are inhibitors of methanol oxidation in whole cells of methylotrophs, had little effect on activity of the purified enzyme. The results now extend the range of substrates oxidized by methanol dehydrogenase to include the aromatic alcohols

    Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis

    Full text link
    Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed.</jats:p

    Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis

    Full text link
    Cellulase production was examined in two strains of Neocallimastix frontalis, namely, PN-1 isolated from the ovine rumen, and PN-2 from the bovine rumen. For both strains, carboxymethylcellulase (CMCase) had a pH optimum of 6.0 and a temperature optimum of 50 degrees C. CMCase resided mainly in the culture fluid, and activities up to 170 U ml-1 (1 U represents 1 microgram of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of cellulose ml-1. For resting cultures of strain PN-1, the yield of CMCase increased from 9.9 X 10(3) to 10.4 X 10(4) U per g of cellulose degraded, as the initial cellulose concentration decreased from 10 to 0.58 mg ml-1. The range for PN-2 was 8.1 X 10(3) to 11 X 10(4) U g-1. Shaking cultures improved yields for strain PN-1 but not for PN-2. Decreased CMCase production at high initial cellulose concentrations concurred with accumulation of glucose, and addition of glucose (4 mg ml-1) to cultures grown on low cellulose in which none of the sugar accumulated repressed CMCase. Adsorption of CMCase was excluded as a likely explanation for decreased yields at high initial cellulose as only a low proportion (less than 20%) of the enzyme was adsorbed onto the growth substrate. Exoglucanase, measured with alkali-treated Sigmacell or Avicel, gave low levels of activity in the culture fluid (less than 2 U ml-1) and did not appear to be associated with the fungal rhizoid, as treatment with various solubilizing agents failed to give increased activity.(ABSTRACT TRUNCATED AT 250 WORDS)</jats:p
    corecore