3,221 research outputs found

    Numerical Latent Heat Observation of the q=5 Potts Model

    Full text link
    Site energy of the five-state ferromagnetic Potts model is numerically calculated at the first-order transition temperature using corner transfer matrix renormalization group (CTMRG) method. The calculated energy of the disordered phase U+U^{+} is clearly different from that of the ordered phase UU^{-}. The obtained latent heat L=UU+L = U^{-} - U^{+} is 0.027, which quantitatively agrees with the exact solution.Comment: 2 pages, Latex(JPSJ style files are included), 2 ps figures, submitted to J. Phys. Soc. Jpn.(short note

    Incommensurate structures studied by a modified Density Matrix Renormalization Group Method

    Full text link
    A modified density matrix renormalization group (DMRG) method is introduced and applied to classical two-dimensional models: the anisotropic triangular nearest- neighbor Ising (ATNNI) model and the anisotropic triangular next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have complex structures and exhibit incommensurate phases. It was found that the incommensurate phase completely separates the disordered phase from one of the commensurate phases, i. e. the non-existence of the Lifshitz point in phase diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB, presented at MECO'24 1999 (Wittenberg, Germany

    Two-scale momentum theory for time-dependent modelling of large wind farms

    Full text link
    This paper presents a theory based on the law of momentum conservation to define and help analyse the problem of large wind farm aerodynamics. The theory splits the problem into two sub-problems; namely an 'external' (or farm-scale) problem, which is a time-dependent problem considering large-scale motions of the atmospheric boundary layer (ABL) to assess the amount of momentum available to the ABL's bottom resistance (due to wind turbines and land/sea surface) at a certain time; and an 'internal' (or turbine-scale) problem, which is a quasi-steady (in terms of large-scale motions of the ABL) problem describing the breakdown of the ABL's bottom resistance into wind turbine drag and land/sea surface friction. The two sub-problems are coupled to each other through a non-dimensional parameter called 'farm wind-speed reduction factor,' for which a simple analytic equation is derived that can be solved iteratively using information obtained from both sub-problems. This general form of coupling allows us to use the present theory with various types of flow models at each scale, such as a numerical weather prediction (NWP) model for the external problem and a computational fluid dynamics (CFD) model for the internal problem. The theory is presented for a simplified wind farm situation first, followed by a discussion on how the theory can be applied (in an approximate manner) to real-world problems; for example, how to estimate the power loss due to the so-called 'wind farm blockage effect' for a given large wind farm under given environmental conditions.Comment: Under consideration for publication in J. Fluid Mech. (16 pages, 5 figures

    Electronic Structure, Local Moments and Transport in Fe_2VAl

    Full text link
    Local spin density approximation calculations are used to elucidate electronic and magnetic properties of Heusler structure Fe_2VAl. The compound is found to be a low carrier density semimetal. The Fermi surface has small hole pockets derived from a triply degenerate Fe derived state at Gamma compensated by an V derived electron pocket at the X point. The ideal compound is found to be stable against ferromagnetism. Fe impurities on V sites, however, behave as local moments. Because of the separation of the hole and electron pockets the RKKY interaction between such local moments should be rapidly oscillating on the scale of its decay, leading to the likelihood of spin-glass behavior for moderate concentrations of Fe on V sites. These features are discussed in relation to experimental observations of an unusual insulating state in this compound.Comment: 16 pages, RevTeX, 5 figure

    An analytical model of momentum availability for predicting large wind farm power

    Full text link
    Turbine-wake and farm-atmosphere interactions influence wind farm power production. For large offshore farms, the farm-atmosphere interaction is usually the more significant effect. This study proposes an analytical model of the `momentum availability factor' to predict the impact of farm-atmosphere interactions. It models the effects of net advection, pressure gradient forcing and turbulent entrainment, using steady quasi-1D flow assumptions. Turbulent entrainment is modelled by assuming self-similar vertical shear stress profiles. We used the model with the `two-scale momentum theory' to predict the power of large finite-sized farms. The model compared well with existing results of large-eddy simulations (LES) of finite wind farms in conventionally neutral boundary layers. The model captured most of the effects of atmospheric boundary layer (ABL) height on farm performance by considering the undisturbed vertical shear stress profile of the ABL as an input. In particular, the model predicted the power of staggered wind farms with a typical error of 5% or less. The developed model provides a novel way of instantly predicting the power of large wind farms, including the farm blockage effects. A further simplification of the model to analytically predict the 'wind extractability factor' is also presented. This study provides a novel framework for modelling farm-atmosphere interactions. Future studies can use the framework to better model large wind farms.Comment: 22 pages, 12 figures, 4 table

    Two-Time Physics with gravitational and gauge field backgrounds

    Get PDF
    It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d-dimensions (one-time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the worldline formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1) +1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target d+2 dimensional spacetime. The gravitational background obeys a null homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher d+2 dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden.Comment: Latex, 19 pages, references adde

    Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Get PDF
    Shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and descriptive measures (such as means and variances) for each subject and the pooled distances provide the morphometric differences between diagnostic groups, but they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the distances is introduced. For censoring of LCDM distances, the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, and distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances. Furthermore, the analysis of censored distances provides information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC and perhaps shrinkage in MDD and HR subjects is observed when compared to Ctrl subjects. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.Comment: 25 pages, 10 figure

    Density Matrices for a Chain of Oscillators

    Full text link
    We consider chains with an optical phonon spectrum and study the reduced density matrices which occur in density-matrix renormalization group (DMRG) calculations. Both for one site and for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which are correspondingly exponential, are determined and discussed. The results for large systems are obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure

    Symmetry adapted finite-cluster solver for quantum Heisenberg model in two-dimensions: a real-space renormalization approach

    Full text link
    We present a quantum cluster solver for spin-SS Heisenberg model on a two-dimensional lattice. The formalism is based on the real-space renormalization procedure and uses the lattice point group-theoretical analysis and nonabelian SU(2) spin symmetry technique. The exact diagonalization procedure is used twice at each renormalization group step. The method is applied to the spin-half antiferromagnet on a square lattice and a calculation of local observables is demonstrated. A symmetry based truncation procedure is suggested and verified numerically.Comment: willm appear in J. Phys.

    Gravitational fields as generalized string models

    Full text link
    We show that Einstein's main equations for stationary axisymmetric fields in vacuum are equivalent to the motion equations for bosonic strings moving on a special nonflat background. This new representation is based on the analysis of generalized harmonic maps in which the metric of the target space explicitly depends on the parametrization of the base space. It is shown that this representation is valid for any gravitational field which possesses two commuting Killing vector fields. We introduce the concept of dimensional extension which allows us to consider this type of gravitational fields as strings embedded in D-dimensional nonflat backgrounds, even in the limiting case where the Killing vector fields are hypersurface orthogonal.Comment: latex, 25 page
    corecore