3,595 research outputs found

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar

    Inhomogeneous Condensates in Planar QED

    Get PDF
    We study the formation of vacuum condensates in 2+12+1 dimensional QED in the presence of inhomogeneous background magnetic fields. For a large class of magnetic fields, the condensate is shown to be proportional to the inhomogeneous magnetic field, in the large flux limit. This may be viewed as a {\it local} form of the {\it integrated} degeneracy-flux relation of Aharonov and Casher.Comment: 13 pp, LaTeX, no figures; to appear in Phys. Rev.

    A Note on Asymptotic Freedom at High Temperatures

    Get PDF
    This short note considers, within the external field approach outlined in hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the high temperature limit. Its influence on a temperature- and field-dependent running coupling constant is examined. The thermal imaginary part of the mode is temperature-independent in our approach and exactly cancels the well-known zero temperature imaginary part, thus rendering the Savvidy vacuum stable. Combining the real part of the mode with the contributions from the higher lying Landau modes and the vacuum contribution, a field-independent coupling alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature running coupling constant with average thermal momenta \approx 2pi T for gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.

    "Cold Melting" of Invar Alloys

    Full text link
    An anomalously strong volume magnetostriction in Invars may lead to a situation when at low temperatures the dislocation free energy becomes negative and a multiple generation of dislocations becomes possible. This generation induces a first order phase transition from the FCC crystalline to an amorphous state, and may be called "cold melting". The possibility of the cold melting in Invars is connected with the fact that the exchange energy contribution into the dislocation self energy in Invars is strongly enhanced, as compared to conventional ferromagnetics, due to anomalously strong volume magnetostriction. The possible candidate, where this effect can be observed, is a FePt disordered Invar alloy in which the volume magnetostriction is especially large

    "An effective two dimensionality" cases bring a new hope to the Kaluza-Klein[like] theories

    Full text link
    One step towards realistic Kaluza-Klein[like] theories and a loop hole through the Witten's "no-go theorem" is presented for cases which we call an effective two dimensionality cases: In d=2d=2 the equations of motion following from the action with the linear curvature leave spin connections and zweibeins undetermined. We present the case of a spinor in d=(1+5)d=(1+5) compactified on a formally infinite disc with the zweibein which makes a disc curved on an almost S2S^2 and with the spin connection field which allows on such a sphere only one massless normalizable spinor state of a particular charge, which couples the spinor chirally to the corresponding Kaluza-Klein gauge field. We assume no external gauge fields. The masslessness of a spinor is achieved by the choice of a spin connection field (which breaks parity), the zweibein and the normalizability condition for spinor states, which guarantee a discrete spectrum forming the complete basis. We discuss the meaning of the hole, which manifests the noncompactness of the space.Comment: 26 pages, 1 figure, an addition which helps to clarify the assumptions and their consequences (the discreteness of spectrum, the massless solution of one handedness,..
    corecore