22,677 research outputs found

    Parton Production Via Vacuum Polarization

    Full text link
    We discuss the production mechanism of partons via vacuum polarization during the very early, gluon dominated phase of an ultrarelativistic heavy-ion collision in the framework of the background field method of quantum chromodynamics.Comment: 3 pages, Latex, 3 figures (eps), to be published in JPhysG, SQM2001 proceeding

    A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase

    Get PDF
    The His274 → Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1

    Entanglement measurement with discrete multiple coin quantum walks

    Full text link
    Within a special multi-coin quantum walk scheme we analyze the effect of the entanglement of the initial coin state. For states with a special entanglement structure it is shown that this entanglement can be meausured with the mean value of the walk, which depends on the i-concurrence of the initial coin state. Further on the entanglement evolution is investigated and it is shown that the symmetry of the probability distribution is reflected by the symmetry of the entanglement distribution.Comment: 9 pages, IOP styl

    Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field

    Full text link
    We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field Ea(t)E^a(t) with arbitrary color index aa=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum dWd4xd2pT\frac{dW}{d^4x d^2p_T} from arbitrary Ea(t)E^a(t). We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate dWd4xd2pT\frac{dW}{d^4x d^2p_T}. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives dnEa(t)dtn\frac{d^nE^a(t)}{dt^n} where n=1,2,....n=1,2,....\infty and has the same functional dependence on two casimir invariants [Ea(t)Ea(t)][E^a(t)E^a(t)] and [dabcEa(t)Eb(t)Ec(t)]2[d_{abc}E^a(t)E^b(t)E^c(t)]^2 as the constant chromo-electric field EaE^a result with the replacement: EaEa(t)E^a \to E^a(t). This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal

    General Form of the Color Potential Produced by Color Charges of the Quark

    Full text link
    Constant electric charge ee satisfies the continuity equation μjμ(x)=0\partial_\mu j^{\mu}(x)= 0 where jμ(x)j^\mu(x) is the current density of the electron. However, the Yang-Mills color current density jμa(x)j^{\mu a}(x) of the quark satisfies the equation Dμ[A]jμa(x)=0D_\mu[A] j^{\mu a}(x)= 0 which is not a continuity equation (μjμa(x)0\partial_\mu j^{\mu a}(x)\neq 0) which implies that a color charge qa(t)q^a(t) of the quark is not constant but it is time dependent where a=1,2,...8a=1,2,...8 are color indices. In this paper we derive general form of color potential produced by color charges of the quark. We find that the general form of the color potential produced by the color charges of the quark at rest is given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr \frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where drdr integration is an indefinite integration, ~~ Qab(τ0)=fabdqd(τ0)Q_{ab}(\tau_0)=f^{abd}q^d(\tau_0), ~~r=xX(τ0)r=|{\vec x}-{\vec X}(\tau_0)|, ~~τ0=trc\tau_0=t-\frac{r}{c} is the retarded time, ~~cc is the speed of light, ~~X(τ0){\vec X}(\tau_0) is the position of the quark at the retarded time and the repeated color indices b,db,d(=1,2,...8) are summed. For constant color charge qaq^a we reproduce the Coulomb-like potential Φa(x)=qar\Phi^a(x)=\frac{q^a}{r} which is consistent with the Maxwell theory where constant electric charge ee produces the Coulomb potential Φ(x)=er\Phi(x)=\frac{e}{r}.Comment: Final version, two more sections added, 45 pages latex, accepted for publication in JHE
    corecore