6,838 research outputs found

    Doppler-free spectroscopy in driven three-level systems

    Full text link
    We demonstrate two techniques for studying the features of three-level systems driven by two lasers (called control and probe), when the transitions are Doppler broadened as in room-temperature vapor. For Λ\Lambda-type systems, the probe laser is split to produce a counter-propagating pump beam that saturates the transition for the zero-velocity atoms. Probe transmission then shows Doppler-free peaks, which can even have sub-natural linewidth. For V-type systems, the transmission of the control beam is detected as the probe laser is scanned. The signal shows Doppler-free peaks when the probe laser is resonant with transitions for the zero-velocity group. Both techniques greatly simplify the study of three-level systems since theoretical predictions can be directly compared without complications from Doppler broadening and the presence of multiple hyperfine levels in the spectrum.Comment: 6 pages, 5 figure

    Precise measurement of hyperfine structure in the 5P3/25P_{3/2} state of 85^{85}Rb

    Full text link
    We demonstrate a technique to measure hyperfine structure using a frequency-stabilized diode laser and an acousto-optic modulator locked to the frequency difference between two hyperfine peaks. We use this technique to measure hyperfine intervals in the 5P3/25P_{3/2} state of 85^{85}Rb and obtain a precision of 20 kHz. We extract values for the magnetic-dipole coupling constant A=25.038(5)A=25.038(5) MHz and the electric-quadrupole coupling constant B=26.011(22)B=26.011(22) MHz. These values are a significant improvement over previous results.Comment: 4 pages, 4 figure

    Observation of the nuclear magnetic octupole moment of 173^{173}Yb from precise measurements of hyperfine structure in the 3P2{^3P}_2 state

    Full text link
    We measure hyperfine structure in the metastable 3P2{^3P}_2 state of 173^{173}Yb and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the 3P1{^3P}_1 and 3S1{^3S}_1 states. We measure frequencies of hyperfine transitions of the 3P23S1{^3P}_2 \rightarrow {^3S}_1 line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby 3P1{^3P}_1 and 1P1{^1P}_1 states are below 30 kHz. We obtain the hyperfine coefficients as: A=742.11(2)A=-742.11(2) MHz, B=1339.2(2)B=1339.2(2) MHz, which represent two orders-of-magnitude improvement in precision, and C=0.54(2)C=0.54(2) MHz. From atomic structure calculations, we obtain the nuclear moments: quadrupole Q=2.46(12)Q=2.46(12) b and octupole Ω=34.4(21)\Omega=-34.4(21) b\,×μN\times \mu_N.Comment: 5 pages, 1 figur

    Direct measurement of the fine-structure interval in alkali atoms using diode lasers

    Get PDF
    We demonstrate a technique for directly measuring the fine-structure interval in alkali atoms using two frequency-stabilized diode lasers. Each laser has a linewidth of order 1 MHz and precise tunability: one laser is tuned to a hyperfine transition in the D_1 line, and the other laser to a hyperfine transition in the D_2 line. The outputs of the lasers are fed into a scanning Michelson interferometer that measures the ratio of their wavelengths accurately. To illustrate the technique, we measure the fine-structure interval in Rb, and obtain a value of 237.6000(3)(5) cm^-1 for the hyperfine-free 5P_{3/2} - 5P_{1/2} interval.Comment: 3 pages, 2 figures, to be published in Applied Physics Letters, 20 May 2002 editio

    Precise measurement of hyperfine intervals using avoided crossing of dressed states

    Full text link
    We demonstrate a technique for precisely measuring hyperfine intervals in alkali atoms. The atoms form a three-level Λ\Lambda system in the presence of a strong control laser and a weak probe laser. The dressed states created by the control laser show significant linewidth reduction. We have developed a technique for Doppler-free spectroscopy that enables the separation between the dressed states to be measured with high accuracy even in room-temperature atoms. The states go through an avoided crossing as the detuning of the control laser is changed from positive to negative. By studying the separation as a function of detuning, the center of the level-crossing diagram is determined with high precision, which yields the hyperfine interval. Using room-temperature Rb vapor, we obtain a precision of 44 kHz. This is a significant improvement over the current precision of ~ 1 MHz.Comment: 4 pages, 4 figures. To be published shortly in Europhysics Letter

    Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow

    Get PDF
    Measurements were made of two components of the average and fluctuating velocities, and of the local self-diffusion coefficients in a flow of granular material. The experiments were performed in a 1 m-high vertical channel with roughened sidewalls and with polished glass plates at the front and the back to create a two-dimensional flow. The particles used were glass spheres with a nominal diameter of 3 mm. The flows were high density and were characterized by the presence of long-duration frictional contacts between particles. The velocity measurements indicated that the flows consisted of a central uniform regime and a shear regime close to the walls. The fluctuating velocities in the transverse direction increased in magnitude from the centre towards the walls. A similar variation was not observed for the streamwise fluctuations. The self-diffusion coefficients showed a significant dependence on the fluctuating velocities and the shear rate. The velocity fluctuations were highly anistropic with the streamwise components being 2 to 2.5 times the transverse components. The self-diffusion coefficients for the streamwise direction were an order-of-magnitude higher than those for the transverse direction. The surface roughness of the particles led to a decrease in the self-diffusion coefficients
    corecore