490 research outputs found

    Development of a score for assessment of radiologic damage in large-vessel vasculitis (Combined Arteritis Damage Score, CARDS)

    Get PDF
    OBJECTIVES: Outcome assessment in large-vessel vasculitis (LVV) remains challenging and this impairs patient management and the conduct of clinical studies. Previous proposals for outcome tools have not included imaging. This study aimed to develop an imaging score to quantify damage in LVV and to assess the difference between Takayasu (TAK) and giant cell arteritis (GCA). METHODS: Ninety-six patients (41 TAK, 55 GCA) were identified from local registries at two University Hospitals in the UK. Radiologic lesions including stenosis, occlusion and aneurysm were evaluated in 25 arterial regions by enhanced computed tomography or magnetic resonance angiography. Lesion correlation with combined damage assessment scores was employed in a multiple regression analysis to define the weight of individual lesions and develop a damage index. RESULTS: A numerical damage index was developed: the “Combined Arteritis Damage Score (CARDS)”. The index was derived from a formula: number of regions with mild stenosis × 0.6 + number of regions with moderate to severe stenosis × 1.2 + number with occlusions × 1.6 + number with aneurysms × 0.8 in 25 arterial regions. The median CARDS was higher in TAK than GCA (4.1 and 0.6, interquartile range 1.3-5.7 and 0-3, p<0.001). CONCLUSIONS: We have developed a damage assessment tool, CARDS, based on imaging in LVV of potential value to clinical studies and patient management. TAK and GCA differ in the radiologic severity of disease.Dr. Daiki Nakagomi is supported by the Japan College of Rheumatology and Shimoshizu Hospital, National Hospital Organization. This project was supported by the Cambridge Biomedical Research Centre

    Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll-out: an observational and case-control study

    Get PDF
    Background Rotavirus is the main cause of severe acute gastroenteritis in children in Africa. Monovalent human rotavirus vaccine (RV1) was added into Malawi's infant immunisation schedule on Oct 29, 2012. We aimed to assess the impact and effectiveness of RV1 on rotavirus gastroenteritis in the 2 years after introduction. Methods From Jan 1, 2012, to June 30, 2014, we recruited children younger than 5 years who were admitted into Queen Elizabeth Central Hospital, Blantyre, Malawi, with acute gastroenteritis. We assessed stool samples from these children for presence of rotavirus with use of ELISA and we genotyped rotaviruses with use of RT-PCR. We compared rotavirus detection rates in stool samples and incidence of hospital admittance for rotavirus in children from Jan 1 to June 30, in the year before vaccination (2012) with the same months in the 2 years after vaccination was introduced (2013 and 2014). In the case-control portion of our study, we recruited eligible rotavirus-positive children from the surveillance platform and calculated vaccine effectiveness (one minus the odds ratio of vaccination) by comparing infants with rotavirus gastroenteritis with infants who tested negative for rotavirus, and with community age-matched and neighbourhood-matched controls. Findings We enrolled 1431 children, from whom we obtained 1417 stool samples (99%). We detected rotavirus in 79 of 157 infants (50%) before the vaccine, compared with 57 of 219 (40%) and 52 of 170 (31%) in successive calendar years after vaccine introduction (p=0·0002). In the first half of 2012, incidence of rotavirus hospital admission was 269 per 100 000 infants compared with 284 in the same months of 2013 (rise of 5·8%, 95% CI −23·1 to 45·4; p=0·73) and 153 in these months in 2014 (a reduction from the prevaccine period of 43·2%, 18·0–60·7; p=0·003). We recruited 118 vaccine-eligible rotavirus cases (median age 8·9 months; IQR 6·6–11·1), 317 rotavirus-test-negative controls (9·4 months; 6·9–11·9), and 380 community controls (8·8 months; 6·5–11·1). Vaccine effectiveness for two doses of RV1 in rotavirus-negative individuals was 64% (95% CI 24–83) and community controls was 63% (23–83). The point estimate of effectiveness was higher against genotype G1 than against G2 and G12. Interpretation Routine use of RV1 reduced hospital admissions for several genotypes of rotavirus in children younger than 5 years, especially in infants younger than 1 year. Our data support introduction of rotavirus vaccination at the WHO recommended schedule, with continuing surveillance in high-mortality countries

    Population Impact and Effectiveness of Monovalent Rotavirus Vaccination in Urban Malawian Children 3 Years After Vaccine Introduction: Ecological and Case-Control Analyses.

    Get PDF
    BACKGROUND: Rotavirus vaccines have been introduced in many low-income African countries including Malawi in 2012. Despite early evidence of vaccine impact, determining persistence of protection beyond infancy, the utility of the vaccine against specific rotavirus genotypes, and effectiveness in vulnerable subgroups is important. METHODS: We compared rotavirus prevalence in diarrheal stool and hospitalization incidence before and following rotavirus vaccine introduction in Malawi. Using case-control analysis, we derived vaccine effectiveness (VE) in the second year of life and for human immunodeficiency virus (HIV)-exposed and stunted children. RESULTS: Rotavirus prevalence declined concurrent with increasing vaccine coverage, and in 2015 was 24% compared with prevaccine mean baseline in 1997-2011 of 32%. Since vaccine introduction, population rotavirus hospitalization incidence declined in infants by 54.2% (95% confidence interval [CI], 32.8-68.8), but did not fall in older children. Comparing 241 rotavirus cases with 692 test-negative controls, VE was 70.6% (95% CI, 33.6%-87.0%) and 31.7% (95% CI, -140.6% to 80.6%) in the first and second year of life, respectively, whereas mean age of rotavirus cases increased from 9.3 to 11.8 months. Despite higher VE against G1P[8] than against other genotypes, no resurgence of nonvaccine genotypes has occurred. VE did not differ significantly by nutritional status (78.1% [95% CI, 5.6%-94.9%] in 257 well-nourished and 27.8% [95% CI, -99.5% to 73.9%] in 205 stunted children;P= .12), or by HIV exposure (60.5% [95% CI, 13.3%-82.0%] in 745 HIV-unexposed and 42.2% [95% CI, -106.9% to 83.8%] in 174 exposed children;P= .91). CONCLUSIONS: Rotavirus vaccination in Malawi has resulted in reductions in disease burden in infants <12 months, but not in older children. Despite differences in genotype-specific VE, no genotype has emerged to suggest vaccine escape. VE was not demonstrably affected by HIV exposure or stunting

    Impact of monovalent rotavirus vaccine on diarrhoea-associated post-neonatal infant mortality in rural communities in Malawi: a population-based birth cohort study

    Get PDF
    Background: Rotavirus is a major contributor to child mortality. The effect of rotavirus vaccine on diarrhoea mortality has been estimated in middle-income but not low-income settings, where mortality is high and vaccine effectiveness in reducing admissions to hospital is lower. Empirical population-based mortality studies have not been done in any setting. Malawi introduced monovalent rotavirus vaccine (RV1) in October, 2012. We aimed to investigate the impact and effectiveness of the RV1 vaccine in reducing diarrhoea-associated mortality in infants aged 10–51 weeks. Methods: In this population-based cohort study, we included infants born between Jan 1, 2012, and June 1, 2015, in Mchinji, Central Malawi and analysed data on those surviving 10 weeks. Individual vaccination status was extracted from caregiver-held records or report at home visits at 4 months and 1 year of age. Survival to 1 year was confirmed at home visit, or cause of death ascertained by verbal autopsy. We assessed impact (1 minus mortality rate ratio following vs before vaccine introduction) using Poisson regression. Among vaccine-eligible infants (born from Sept 17, 2012), we assessed effectiveness (1 minus hazard ratio) using Cox regression. Findings: Between Jan 1, 2012, and June 1, 2015, we recruited 48 672 livebirths in Mchinji, among whom 38 518 were vaccine-eligible and 37 570 survived to age 10 weeks. Two-dose versus zero-dose effectiveness analysis included 28 141 infants, of whom 101 had diarrhoea-associated death before 1 year of age. Diarrhoea-associated mortality declined by 31% (95% CI 1–52; p=0·04) after RV1 introduction. Effectiveness against diarrhoea-mortality was 34% (95% CI –28 to 66; p=0·22). Interpretation: RV1 was associated with substantial reduction in diarrhoea-associated deaths among infants in this rural sub-Saharan African setting. These data add considerable weight to evidence showing the impact of rotavirus vaccine programmes. Funding: Wellcome Trust and GlaxoSmithKline Biologicals

    Measurements of double-helicity asymmetries in inclusive J/ψJ/\psi production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s}=510 GeV

    Full text link
    We report the double helicity asymmetry, ALLJ/ψA_{LL}^{J/\psi}, in inclusive J/ψJ/\psi production at forward rapidity as a function of transverse momentum pTp_T and rapidity y|y|. The data analyzed were taken during s=510\sqrt{s}=510 GeV longitudinally polarized pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, J/ψJ/\psi particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψA_{LL}^{J/\psi} is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψA_{LL}^{J/\psi} by detecting the decay daughter muon pairs μ+μ\mu^+ \mu^- within the PHENIX muon spectrometers in the rapidity range 1.2<y<2.21.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψA_{LL}^{J/\psi} to be 0.012±0.0100.012 \pm 0.010~(stat)~±\pm~0.0030.003(syst). The ALLJ/ψA_{LL}^{J/\psi} can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken xx: one at moderate range x0.05x \approx 0.05 where recent RHIC data of jet and π0\pi^0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-xx region x2×103x \approx 2\times 10^{-3}. Thus our new results could be used to further constrain the gluon polarization for x<0.05x< 0.05.Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version accepted for publication by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized pp++AA collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized pp++pp collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in pp++pp collisions predicts only a moderate atomic-mass-number (AA) dependence. In contrast, the asymmetries observed at RHIC in pp++AA collisions showed a surprisingly strong AA dependence in inclusive forward neutron production. The observed asymmetry in pp++Al collisions is much smaller, while the asymmetry in pp++Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed AA dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore