54 research outputs found

    Experimental demonstration of sub-wavelength image channeling using capacitively loaded wire medium

    Full text link
    In this letter we experimentally demonstrate a possibility to achieve significant sub-wavelength resolution of a near-field image channeled through a layer of an electromagnetic crystal. An image having radius of λ/10\lambda/10 has been realized using an electrically dense lattice of capacitively loaded wires. The loading allows to reduce the lattice period dramatically so that it is only a small fraction of the free-space wavelength. It is shown that losses in the structure only decrease the total amplitude of the image, but do not influence the resolution.Comment: 4 pages, 7 figures, submitted to PR

    Radiation pattern of a classical dipole in a photonic crystal: photon focusing

    Full text link
    The asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal possessing an incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates a strong modification with respect to the dipole radiation pattern in vacuum. Radiated power is suppressed in the direction of the spatial stopband and strongly enhanced in the direction of the group velocity, which is stationary with respect to a small variation of the wave vector. An effect of radiated power enhancement is explained in terms of \emph{photon focusing}. Numerical example is given for a square-lattice two-dimensional photonic crystal. Predictions of asymptotic analysis are substantiated with finite-difference time-domain calculations, revealing a reasonable agreement.Comment: Submitted to Phys. Rev.

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Spatial distribution of Cherenkov radiation in periodic dielectric media

    Full text link
    The nontrivial dispersion relation of a periodic medium affects both the spectral and the spatial distribution of Cherenkov radiation. We present a theory of the spatial distribution of Cherenkov radiation in the far-field zone inside arbitrary three- and two-dimensional dielectric media. Simple analytical expressions for the far-field are obtained in terms of the Bloch mode expansion. Numerical examples of the Cherenkov radiation in a two-dimensional photonic crystal is presented. The developed analytical theory demonstrates good agreement with numerically rigorous finite-difference time-domain calculations.Comment: 14 pages, 5 figures, Journal of Optics A (in press

    Nondifractive Propagation of Light in Photonic Crystals

    Full text link
    We show that diffraction of electromagnetic radiation (in particular of a visible light) can disappear in propagation through materials with periodically in space modulated refraction index, i.e. photonic crystals. In this way the light beams of arbitrary width can propagate without diffractive broadening and, equivalently, arbitrary light patterns can propagate without diffractive smearing

    On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers

    Full text link
    Dispersion properties of electromagnetic crystals formed by small uniaxial resonant scatterers (magnetic or electric) are studied using the local field approach. The goal of the study is to determine the conditions under which the homogenization of such crystals can be made. Therefore the consideration is limited by the frequency region where the wavelength in the host medium is larger than the lattice periods. It is demonstrated that together with known restriction for the homogenization related with the large values of the material parameters there is an additional restriction related with their small absolute values. From the other hand, the homogenization becomes allowed in both cases of large and small material parameters for special directions of propagation. Two unusual effects inherent to the crystals under consideration are revealed: flat isofrequency contour which allows subwavelength imaging using canalization regime and birefringence of extraordinary modes which can be used for beam splitting.Comment: 16 pages, 12 figures, submitted to PR

    Polariton bandstructure of disordered metallic photonic crystal slabs

    Get PDF
    We analyze the influence of disorder on the polaritonic bandstructure of metallic photonic crystal slabs. Different disorder types with varying next-neighbor correlations and disorder amounts are implemented. Angle-resolved transmission measurements allow to determine the relation of bandstructure and disorder. It is found that uncorrelated disorder retains the bandstructure and only reduces the splitting between the gaps. Correlated disorder, however, leads to the complete destruction of the bandstructure for moderate disorder amounts due to the excitation of different modes. We present a model that shows a good agreement with the measurements

    Nonspreading Light Pulses in Photonic Crystals

    Get PDF
    We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex

    Hemispheric Asymmetry Gender Differences in Preadolescent Children

    Get PDF
    Background: Investigating various postnatal parameters of cerebral hemispheres is of great practical value.Objective: To study gender differences in hemispheric parameters and interhemispheric interactions in preadolescent children.Materials and methods: The retrospective study assessed archived brain magnetic resonance images of 60 eight-year-old boys and 60 eight-year-old girls. The analyzed parameters were as follows: 1) hemispheric length; 2) hemispheric width; 3) hemispheric height; 4) width-longitudinal index of a hemisphere; 5) altitude-longitudinal index of a hemisphere; 6) length of frontal lobes; 7) length of parietal lobes; 8) length of occipital lobes; 9) length of temporal lobes. Quantitative indicators were assessed for normal distribution using the Kolmogorov–Smirnov test. Source data were accumulated and arranged in Microsoft Excel 2016 spreadsheets. Statistica 10.0 was used for the statistical analysis. The results were considered statistically significant with P < 0.05.Results: The analysis of cephalometric indicators suggests sex-related variation in the cerebral hemispheres. Based on the obtained data we can identify morphometric parameters of interhemispheric variability that may act as one of the morphometric criteria for the brain asymmetry. The study results can be widely used for neuroimaging.Conclusions: We determined cephalometric reference values for various cerebral hemispheres parts in preadolescent children
    corecore