6 research outputs found
NRG approach to the transport through a finite Hubbard chain connected to reservoirs
We study the low-energy properties of a Hubbard chain of finite size N_C
connected to two noninteracting leads using the numerical renormalization group
(NRG) method. The results obtained for N_C = 3 and 4 show that the low-lying
eigenstates have one-to-one correspondence with the free quasi-particle
excitations of a local Fermi liquid. It enables us to determine the transport
coefficients from the fixed-point Hamiltonian. At half-filling, the conductance
for even N_C decreases exponentially with increasing U showing a tendency
towards the development of a Mott-Hubbard gap. In contrast, for odd N_C, the
Fermi-liquid nature of the low-energy states assures perfect transmission
through the Kondo resonance. Our formulation to deduce the conductance from the
fixed-point energy levels can be applied to various types of interacting
systems.Comment: One typo found in Eq.(3) in previous version has been correcte
