7 research outputs found
Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites
[EN] The objective of this study was to investigate the thermal expansivities and degradation properties for several in vitro
conditioned biodegradable poly(lactic acid)/hydroxyapatite (PLA/HA) and poly(lactic acid)/b-tricalcium phosphate (PLA/
bTCP) composites with different mass% of the particle reinforcements (i.e. 10, 20 and 30). The samples were prepared by
extrusion followed by injection moulding and incubated in a customized simulated body fluid at 37 C over 60, 90, 120,
150 and 180 days, respectively. Thermal expansion and degradation properties of in vitro conditioned samples, along with
dynamic mechanical properties of unconditioned ones, were systematically investigated through coefficients of linear
thermal expansion and thermal strain changes, decomposition temperatures, mass changes and per cent residues. The
results indicated that PLA/bTCP composites performed better than PLA/HA composites, irrespective of their filler mass%,
revealing high values of glass transition temperatures, around a mean value of 65 C, both on dynamic mechanical analysis
and on dilatation measurements but lower values on their degradation temperatures, such as 360 C. The results suggest the
feasibility of tailoring high-loaded osteoconductive fillers-reinforced PLA composites for various medical and engineering
applications.Ferri, JM.; Motoc, DL.; Ferrándiz Bou, S.; Balart, R. (2019). Thermal expansivity and degradation properties of PLA/HA and PLA/
bTCP in vitro conditioned composites. Journal of Thermal Analysis and Calorimetry (Online). 138(4):2691-2702. https://doi.org/10.1007/s10973-019-08799-0S269127021384Auras R, Lim LT, Selke S, Tsuji H. Poly(lactic acid): structures, production, synthesis, and applications. New York: Wiley; 2010.Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.Haaparanta A-M, Haimi S, Ellä V, Hopper N, Miettinen S, Suuronen R, et al. Porous polylactide/β-tricalcium phosphate composite scaffolds for tissue engineering applications. J Tissue Eng Regen Med. 2010;4(5):366–73.Ahmed J, Varshney SK. Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop. 2011;14(1):37–58.Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84.Slomkowski S, Penczek S, Duda A. Polylactides—an overview. Polym Adv Technol. 2014;25(5):436–47.Avinc O, Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009;41(6):391–401.Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Impact modified PLA-hydroxyapatite composites—thermo-mechanical properties. Compos A Appl Sci Manuf. 2018;107:326–33.Nazhat SN, Kellomäki M, Törmälä P, Tanner KE, Bonfield W. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J Biomed Mater Res. 2001;58(4):335–43.Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004;238(1):314–9.Li J, Zheng W, Li L, Zheng Y, Lou X. Thermal degradation kinetics of g-HA/PLA composite. Thermochim Acta. 2009;493(1):90–5.Zhang SM, Liu J, Zhou W, Cheng L, Guo XD. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr Appl Phys. 2005;5(5):516–8.Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos A Appl Sci Manuf. 2017;103:96–105.Kang Y, Yao Y, Yin G, Huang Z, Liao X, Xu X, et al. A study on the in vitro degradation properties of poly(l-lactic acid)/β-tricalcuim phosphate(PLLA/β-TCP) scaffold under dynamic loading. Med Eng Phys. 2009;31(5):589–94.Huang J, Ten E, Liu G, Finzen M, Yu W, Lee JS, et al. Biocomposites of pHEMA with HA/β-TCP (60/40) for bone tissue engineering: swelling, hydrolytic degradation, and in vitro behavior. Polymer. 2013;54(3):1197–207.Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials. 2002;23(7):1579–85.Ferri J, Gisbert I, GarcĂa-Sanoguera D, Reig M, Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). J Compos Mater. 2016;50(30):4189–98.Li X, Qi C, Han L, Chu C, Bai J, Guo C, et al. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomater. 2017;64:269–78.Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials. 2000;21(23):2443–52.Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of β-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res. 2002;62(2):265–72.Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820–52.Ignjatovic N, Suljovrujic E, Budinski-Simendic J, Krakovsky I, Uskokovic D. Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J Biomed Mater Res B Appl Biomater. 2004;71B(2):284–94.Martin C. Twin screw extrusion for pharmaceutical processes. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York: Springer; 2013. p. 47–79.Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.Corcione C, Scalera F, Gervaso F, Montagna F, Sannino A, Maffezzoli A. One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J Therm Anal Calorim. 2018;134:1–8.Siqueira L, Passador FR, Costa MM, Lobo AO, Sousa E. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Mater Sci Eng C. 2015;52:135–43.Drummer D, Cifuentes-CuĂ©llar S, Rietzel D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp J. 2012;18(6):500–7.Ferri J, Jordá J, Montanes N, Fenollar O, Balart R. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. J Thermoplast Compos Mater. 2018;31(7):865–81.Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. New York: Wiley; 2014.Aboudi J, Arnold SM, Bednarcyk BA. Chapter 3—fundamentals of the mechanics of multiphase materials. In: Aboudi J, Arnold SM, Bednarcyk BA, editors. Micromechanics of composite materials. Oxford: Butterworth-Heinemann; 2013. p. 87–145.Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2018;45:2803–10.Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009;97(3):929.Schindler A, Doedt M, Gezgin Ĺž, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129(2):833–42.Lee WA, Knight GJ. Ratio of the glass transition temperature to the melting point in polymers. Br Polym J. 1970;2(1):73–80
Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites
[EN] Insights within thermal expansion, conductivity, and decomposition dependencies with temperature on symmetrical and
unsymmetrical layered carbon (CF) or basalt (BF) fabrics in combination with flax fibers (FF) were approached. Driven by
commercial application and environmental concerns, the paper draws attention on a modified formula of cyanate ester with
a common epoxy resin under an optimized ratio of 70:30 (vol%) as well as on the hybrid reinforcements stacking
sequences. Synergetic effects were debated in terms of the CF and BF stacking sequences and corresponding volume
fraction followed by comparisons with values predicted by the deployment of hybrid mixtures rules (RoHM/iRoHM). CF
hybrid architectures revealed enhanced effective thermophysical properties over their BF counterparts and both over the
FF-reinforced polymer composite considered as a reference. Thermal conductivities spread between 0.116 and
0.299 W m-1 K-1 from room temperature up to 250 C on all hybrid specimens, giving rise to an insulator character.
Concerning the coefficient of thermal expansion, CF hybrid architectures disclosed values of 1.236 10-6 K-1 and
3.102 10-6 K-1 compared with BF affine exhibiting 4.794 10-6 K-1 and 6.245 10-6 K-1, respectively, with an increase
in their volume fraction.The corresponding author gratefully acknowledges the financial assistance of German Academic Exchange Service-DAAD that enabled and supported the internship with Fraunhofer Research Institution for Polymeric Materials and Composites-PYCO, Germany. Many thanks go to Dr. Christian Dreyer and Dr. Maciej Gwiazda for the resin formula and access to the composite manufacturing technology.Motoc, DL.; Ferrándiz Bou, S.; Balart, R. (2018). Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites. Journal of Thermal Analysis and Calorimetry. 133(1):509-518. https://doi.org/10.1007/s10973-018-7222-yS5095181331Assarar M, Zouari W, Sabhi H, Ayad R, Berthelot J-M. Evaluation of the damping of hybrid carbon–flax reinforced composites. Compos Struct. 2015;132:148–54.Duc F, Bourban PE, Plummer CJG, MĂĄnson JAE. Damping of thermoset and thermoplastic flax fibre composites. Compos A Appl Sci Manuf. 2014;64:115–23.Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater. 2016;106:149–59.Tian H, Zhang S, Ge X, Xiang A. Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites. J Therm Anal Calorim. 2017;128(3):1495–504.Alvarez V, Rodriguez E, Vázquez A. Thermaldegradation and decomposition of jute/vinylester composites. J Therm Anal Calorim. 2006;85(2):383–9.Manfredi LB, RodrĂguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab. 2006;91(2):255–61.Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet MH, Talon O. Flame retardant treatments of insulating agro-materials from flax short fibres. Polym Degrad Stab. 2013;98(5):1043–51.Bar M, Alagirusamy R, Das A. Flame retardant polymer composites. Fibers Polym. 2015;16(4):705–17.Kollia E, Loutas T, Fiamegkou E, Vavouliotis A, Kostopoulos V. Degradation behavior of glass fiber reinforced cyanate ester composites under hydrothermal ageing. Polym Degrad Stab. 2015;121:200–7.Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym. 2011;86(1):1–18.Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.H-y Cheung, M-p Ho, K-t Lau, Cardona F, Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng. 2009;40(7):655–63.Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf. 2012;43(8):1419–29.Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37(11):1552–96.Praveen RS, Jacob S, Murthy CRL, Balachandran P, Rao YVKS. Hybridization of carbon–glass epoxy composites: an approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics. 2011;51(2):95–104.Jawaid M, Abdul Khalil HPS, Alattas OS. Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A Appl Sci Manuf. 2012;43(2):288–93.Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: a review. Compos A Appl Sci Manuf. 2014;67:181–200.Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos B Eng. 2015;68:185–92.LeGault M. Natural fiber composites: market share, one part at the time. Compos World. 2016;5(2):68–75.Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf. 2004;35(3):371–6.Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64.Bertomeu D, GarcĂa-Sanoguera D, Fenollar O, Boronat T, Balart R. Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polym Compos. 2012;33(5):683–92.Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem. 2014;7(4):469–79.Bakare FO, Ramamoorthy SK, Ă…kesson D, Skrifvars M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos A Appl Sci Manuf. 2016;83:176–84.Pardauil JJR, de Molfetta FA, Braga M, de Souza LKC, Filho GNR, Zamian JR, et al. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J Therm Anal Calorim. 2017;127(2):1221–9.GĹ‚owiĹ„ska E, Datta J, Parcheta P. Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim. 2017;130(1):113–22.Mosiewicki MA, Aranguren MI. A short review on novel biocomposites based on plant oil precursors. Eur Polym J. 2013;49(6):1243–56.Lligadas G, Ronda JC, GaliĂ M, Cádiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today. 2013;16(9):337–43.Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R. Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. J Am Oil Chem Soc. 2013;90(3):449–57.Pil L, Bensadoun F, Pariset J, Verpoest I. Why are designers fascinated by flax and hemp fibre composites? Compos A Appl Sci Manuf. 2016;83:193–205.Wooster TJ, Abrol S, Hey JM, MacFarlane DR. Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos A Appl Sci Manuf. 2004;35(1):75–82.Mallarino S, Chailan JF, Vernet JL. Glass fibre sizing effect on dynamic mechanical properties of cyanate ester composites I. Single frequency investigations. Eur Polym J. 2005;41(8):1804–11.Sothje D, Dreyer C, Bauer M, editors. Advanced possibilities in thermoset recycling. In: The 3rd international conference on thermosets. 2013; Berlin, Germany.Yuan L, Huang S, Gu A, Liang G, Chen F, Hu Y, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos Sci Technol. 2013;87:111–7.Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66(16):3210–20.Marom G, Fischer S, Tuler FR, Wagner HD. Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour. J Mater Sci. 1978;13(7):1419–26.Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer; 2002.Cherki A-B, Remy B, Khabbazi A, Jannot Y, Baillis D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr Build Mater. 2014;54:202–9.Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, et al. Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym Compos. 2002;23(5):872–94.Motoc Luca D, Ferrandiz Bou S, Balart Gimeno R. Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. J Compos Mater. 2014;49(10):1211–1221.CES EduPack. Granta Design; 2013.Monteiro SN, Calado V, Rodriguez RJS, Margem FM. Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Mater Sci Eng, A. 2012;557:17–28