62 research outputs found
Recommended from our members
Arguing satisfaction of security requirements
This chapter presents a process for security requirements elicitation and analysis,
based around the construction of a satisfaction argument for the security of a
system. The process starts with the enumeration of security goals based on assets
in the system, then uses these goals to derive security requirements in the form of
constraints. Next, a satisfaction argument for the system is constructed, using a
problem-centered representation, a formal proof to analyze properties that can be
demonstrated, and structured informal argumentation of the assumptions exposed
during construction of the argument. Constructing the satisfaction argument can
expose missing and inconsistent assumptions about system context and behavior
that effect security, and a completed argument provides assurances that a system
can respect its security requirements
Arguing security: validating security requirements using structured argumentation
This paper proposes using both formal and structured informal arguments to show that an eventual realized system can satisfy its security requirements. These arguments, called 'satisfaction arguments', consist of two parts: a formal argument based upon claims about domain properties, and a set of informal arguments that justify the claims. Building on our earlier work on trust assumptions and security requirements, we show how using satisfaction arguments assists in clarifying how a system satisfies its security requirements, in the process identifying those properties of domains that are critical to the requirements
A framework for security requirements engineering
This paper presents a framework for security requirements
elicitation and analysis, based upon the construction of a context for the system and satisfaction arguments for the security of the system. One starts with enumeration of security goals based on assets in the system. These goals are used to derive security requirements in the form of constraints. The system context is described using a problem-centered notation, then this context is
validated against the security requirements through construction of a satisfaction argument. The satisfaction argument is in two parts: a formal argument that the system can meet its security requirements, and a structured informal argument supporting the assumptions expressed in the formal argument. The construction
of the satisfaction argument may fail, revealing either that the security requirement cannot be satisfied in the context, or that the context does not contain sufficient information to develop the argument. In this case, designers and architects are asked to provide additional design information to resolve the problems
Security Requirements Engineering: A Framework for Representation and Analysis
This paper presents a framework for security requirements elicitation and analysis. The framework is based on constructing a context for the system, representing security requirements as constraints, and developing satisfaction arguments for the security requirements. The system context is described using a problem-oriented notation, then is validated against the security requirements through construction of a satisfaction argument. The satisfaction argument consists of two parts: a formal argument that the system can meet its security requirements and a structured informal argument supporting the assumptions expressed in the formal argument. The construction of the satisfaction argument may fail, revealing either that the security requirement cannot be satisfied in the context or that the context does not contain sufficient information to develop the argument. In this case, designers and architects are asked to provide additional design information to resolve the problems. We evaluate the framework by applying it to a security requirements analysis within an air traffic control technology evaluation project
The RESOLVE Survey Atomic Gas Census and Environmental Influences on Galaxy Gas Reservoirs
We present the H i mass inventory for the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey, a volume-limited, multi-wavelength census of >1500 z = 0 galaxies spanning diverse environments and complete in baryonic mass down to dwarfs of ~109 . This first 21 cm data release provides robust detections or strong upper limits (1.4M H i 1012 ) halos, suggesting that gas stripping and/or starvation may be induced by interactions with larger halos or the surrounding cosmic web. We find that the detailed relationship between G/S and environment varies when we examine different subvolumes of RESOLVE independently, which we suggest may be a signature of assembly bias
Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance
The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe
Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer
In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids—such as carnitine (1.79 fold in EOC, p<0.001; 1.88 fold in MOC, p<0.001), acetylcarnitine (1.75 fold in EOC, p<0.001; 2.39 fold in MOC, p<0.001), and butyrylcarnitine (3.62 fold, p<0.0094 in EOC; 7.88 fold, p<0.001 in MOC). There were also significant changes in phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold; p<0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p<0.001) and several isoforms of tocopherols. We have also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients
- …