1,690 research outputs found

    Standardising the clinical assessment of coronal knee laxity

    Get PDF
    Clinical laxity tests are used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty. This study reports the development and validation of a quantitative technique of assessing collateral knee laxity through accurate measurement of potential variables during routine clinical examination. The hypothesis was that standardisation of a clinical stress test would result in a repeatable range of laxity measurements.Non- invasive infrared tracking technology with kinematic registration of joint centres gave real-time measurement of both coronal and sagittal mechanical tibiofemoral alignment. Knee flexion, moment arm and magnitude of the applied force were all measured and standardised. Three clinicians then performed six knee laxity examinations on a single volunteer using a target moment of 18Nm. Standardised laxity measurements had small standard deviations (within 1.1°) for each clinician and similar mean values between clinicians, with the valgus laxity assessment (mean of 3°) being slightly more consistent than varus (means of 4° or 5°).The manual technique of coronal knee laxity assessment was successfully quantified and standardised, leading to a narrow range of measurements (within the accuracy of the measurement system). Minimising the subjective variables of clinical examination could improve current knowledge of soft tissue knee behaviour

    Glauber dynamics in a single-chain magnet: From theory to real systems

    Full text link
    The Glauber dynamics is studied in a single-chain magnet. As predicted, a single relaxation mode of the magnetization is found. Above 2.7 K, the thermally activated relaxation time is mainly governed by the effect of magnetic correlations and the energy barrier experienced by each magnetic unit. This result is in perfect agreement with independent thermodynamical measurements. Below 2.7 K, a crossover towards a relaxation regime is observed that is interpreted as the manifestation of finite-size effects. The temperature dependences of the relaxation time and of the magnetic susceptibility reveal the importance of the boundary conditions.Comment: Submitted to PRL 10 May 2003. Submitted to PRB 12 December 2003; published 15 April 200

    Effect of cation size variance on spin and orbital order in Eu1−x_{1-x}(La0.254_{0.254}Y0.746_{0.746})x_{x}VO3_3

    Full text link
    We have investigated the RR-ion (RR = rare earth or Y) size variance effect on spin/orbital order in Eu1−x_{1-x}(La0.254_{0.254}Y0.746_{0.746})x_{x}VO3_3. The size variance disturbs one-dimensional orbital correlation in CC-type spin/GG-type orbital ordered states and suppresses this spin/orbital order. In contrast, it stabilizes the other spin/orbital order. The results of neutron and resonant X-ray scattering denote that in the other ordered phase, the spin/orbital patterns are GG-type/CC-type, respectively.Comment: 4 pages, 4 figures, accepted to Rapid Communication in Physical Review

    Role of β2 Integrins in the Binding of Thymocytes to Rat Thymic Macrophages

    Get PDF
    A role of β2 integrins and one of their ligands, ICAM-1, in thymic macrophage (TMF)/thymocyte interactions was studied. TMF were isolated as adherent cells from 4-day old culture of thymic-cell suspensions either from normal or hydrocortisone-treated rats. Adherent cells were 94-98% positive with ED1 (a pan-macrophage marker). The majority of them (75-95%) expressed the CD11b and CD18 molecules, and 60-70% expressed CD54 (ICAM-1). A low proportion of TMF (10-20%) expressed CDlla (LFA-1). The expression of all these antigens was upregulated by IFN-α and TNF-α. The effect of these mAbs on TMF/thymocyte binding was studied using a simple rosette assay by incubating unstimulated or IFN-γ or TNF-α stimulated TMF, grown on microscopic slides with resting or ConA +IL-2 activated thymocytes. It was found that LFA-1/CD18 and ICAM-1 play a significant role in the TMF/thymocyte adhesion. In addition, a LFA-l-dependent/ICAM- 1-independent adhesion pathway was observed, suggesting that LFA-1 might use another ligand. The inhibitory effect of anti-CD18 mAb (WT-3) was higher than the effect of anti-LFA-1 mAb (WT-1) and was a consequence of blocking the CD18 chain both on thymocytes and TMF. No significant difference in the expression and function of adhesion molecules was found between TMF obtained from normal or hydrocortisone-treated rats. The involvement of CD1 1b in these processes was of lesser importance than the role of the CD11a molecule. By using mAbs to different epitopes of the CD11b molecule, such as OX-42 (anti-CD11b/CD11c), ED7, and ED8 (anti-CD11b), it was found that they were either slightly or moderately inhibitory under certain experimental conditions or did not significantly modulate TMF/thymocyte binding. Oχ-42 was slightly stimulatory in some experiments. Cumulatively, these results show that 2 integrins play a significant role in TMF/thymocyte interactions and probably contribute to T-cell development in vivo

    Mechanisms Involved in the Binding of Thymocytes to Rat Thymic Dendritic Cells

    Get PDF
    The effects of monoclonal antibodies (mAbs) to cell-surface molecules, divalent cations, and various cell-signaling and metabolic inhibitors on the binding of thymocytes to rat thymic dendritic cells (TDC) were studied using a rosette assay. It was found that TDC/thymocyte adhesion was stronger and faster at 37°C than at 4°C. Flow cytometric analysis demonstrated that bound thymocytes were predominantly CD4+CD8+ and CD4+CD8-, but in comparison to the phenotype of whole thymocytes, they were enriched in the mature TCRαβhi subset. The binding of thymocytes to TDC at 37°C was almost completely dependent on Ca2+ and Mg2+ and partly on an intact cytoskeleton and calmodulin-dependent protein kinase. The adhesion was independent of new protein synthesis and the activities of protein kinases A and C, tyrosine kinases, as well as phosphotyrosine protein phosphatases. The TDC/thymocyte adhesion at 37°C was partly blocked by anti-LFA-1 (WT.1), anti-CD18 (WT.3), and anti-ICAM-1 (1A29) mAb. MAbs to class II MHC (OX-3 and OX-6), CD4 (W3/25), CD8 (OX-8), and αβTCR (R73) stimulated the adhesion via an LFA-1-dependent pathway, whereas an anti-CD45 mAb (G3C5) stimulated the rosette formation independently of LFA-1. MAbs to CD2 (OX-34), CD11b (ED7), CD11b/c (OX-42), and class I MHC (OX-18) were without significant effects on the adhesion process

    Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM

    Get PDF
    The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian) tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM), which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude–longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF<sub>6</sub>, <sup>222</sup>Rn, and CO<sub>2</sub>. The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed

    Universal observation of multiple order parameters in cuprate superconductors

    Full text link
    The temperature dependence of the London penetration depth \lambda was measured for an untwined single crystal of YBa_2Cu_3O_{7-\delta} along the three principal crystallographic directions (a, b, and c). Both in-plane components (\lambda_a and \lambda_b) show an inflection point in their temperature dependence which is absent in the component along the c-direction (\lambda_c). The data provide convincing evidence that the in-plane superconducting order parameter is a mixture of s+d-wave symmetry whereas it is exclusively s-wave along the c-direction. In conjunction with previous results it is concluded that coupled s+d-order parameters are universal and intrinsic to cuprate superconductors.Comment: 5 pages, 3 figure

    Anisotropic Optic Conductivities due to Spin and Orbital Orderings in LaVO3 and YVO3: First-Principles Studies

    Full text link
    The anisotropy of low energy (0∼\sim5eV) optical excitations in strongly correlated transition-metal oxides is closely related to the spin and orbital orderings. The recent successes of LDA+UU method in describing the magnetic and electronic structures enable us to calculate the optical conductivity from first-principles. The LaVO3_3 and YVO3_3, both of which have 3d23d^2 configuration and have various spin and orbital ordered phases at low temperature, show distinct anisotropy in the optical spectra. The effects of spin and orbital ordering on the anisotropy are studied in detail based on our first-principles calculations. The experimental spectra of both compounds at low temperature phases can be qualitatively explained with our calculations, while the studies for the intermediate temperature phase of YVO3_3 suggest the substantial persistence of the low temperature phase at elevated temperature.Comment: 6 pages, 3 figures, accepted by PR
    • …
    corecore