2,575 research outputs found

    Longitudinal muon spin relaxation in high purity aluminum and silver

    Full text link
    The time dependence of muon spin relaxation has been measured in high purity aluminum and silver samples in a longitudinal 2 T magnetic field at room temperature, using time-differential \musr. For times greater than 10 ns, the shape fits well to a single exponential with relaxation rates of \lambda_{\textrm{Al}} = 1.3 \pm 0.2\,(\textrm{stat.}) \pm 0.3\,(\textrm{syst.})\,\pms and \lambda_{\textrm{Ag}} = 1.0 \pm 0.2\,(\textrm{stat.}) \pm 0.2\,(\textrm{syst.})\,\pms

    Status of the TRIUMF PIENU Experiment

    Full text link
    The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio R=Γ(π+e+νe(γ))/Γ(π+μ+νμ(γ))R={\Gamma}({\pi}^+{\rightarrow}e^+{\nu}_e({\gamma}))/{\Gamma}({\pi}^+{\rightarrow}{\mu}^+{\nu}_{\mu}({\gamma})) with precision <0.1<0.1% to provide a sensitive test of electron-muon universality in weak interactions. The current status of the PIENU experiment is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure

    Improved Search for Heavy Neutrinos in the Decay πeν\pi\rightarrow e\nu

    Get PDF
    A search for massive neutrinos has been made in the decay πe+ν\pi\rightarrow e^+ \nu. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (πe+νh\pi\rightarrow e^+ \nu_h). Upper limits (90 \% C.L.) on the neutrino mixing matrix element Uei2|U_{ei}|^2 in the neutrino mass region 60--135 MeV/c2c^2 were set, which are %representing an order of magnitude improvement over previous results

    Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment

    Get PDF
    The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of &lt;0.1%. Precise measurement of Rπ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium qgqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    Full text link
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator cos(φαφβ)\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and β\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator cos(φα+φβ2Ψ2)\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/382

    The time-dependent expression of keratins 5 and 13 during the reepithelialization of human skin wounds

    Get PDF
    The time-dependent reepithelialization of 55 human surgical skin wounds with a wound age between 8h and more than 2 months was investigated by the immunohistochemical localization of cytokeratins 5 and 13. A complete, rebuilt epidermal layer over the wound area was first detectable in a 5-day-old wound, while all wounds of more than 18 days duration contained a completely reepithelialized wound area. Between 5 and 18 days the basal layer of keratinocytes showed — in contrast to normal skin — only some cells positive for cytokeratin 5. In some, but not all lesions with a wound age of 13 days or more, a basal cell layer completely staining for cytokeratin 5 was demonstrable. This staining pattern was found in all skin wounds with a wound age of more than 23 days. The immunohistochemical detection of cytokeratin 13 which can be observed regularly in non-cornifying squamous epithelia provides no information for the time-estimation of human skin wounds, since no significant temporary expression of this polypeptide seems to occur during the healing of human skin wounds
    corecore