735 research outputs found
An application of the renormalization group to the calculation of the vacuum decay rate in flat and curved space-time
I show that an application of renormalization group arguments may lead to
significant corrections to the vacuum decay rate for phase transitions in flat
and curved space-time. It can also give some information regarding its
dependence on the parameters of the theory, including the cosmological constant
in the case of decay in curved space-time.Comment: 10 pages, LaTeX, various comments and references adde
Derivative expansion and gauge independence of the false vacuum decay rate in various gauges
In theories with radiative symmetry breaking, the calculation of the false
vacuum decay rate requires the inclusion of higher-order terms in the
derivative expansion of the effective action. I show here that, in the case of
covariant gauges, the presence of infrared singularities forbids the consistent
calculation by keeping the lowest-order terms. The situation is remedied,
however, in the case of gauges. Using the Nielsen identities I show
that the final result is gauge independent for generic values of the gauge
parameter that are not anomalously small.Comment: Some comments and references adde
Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories
We consider the one-loop effective potential at zero and finite temperature
in field theories with anisotropic space-time scaling, with critical exponent
, including both scalar and gauge fields. Depending on the relative
strength of the coupling constants for the gauge and scalar interactions, we
find that there is a symmetry breaking term induced at one-loop at zero
temperature and we find symmetry restoration through a first-order phase
transition at high temperature.Comment: 12 pages, 2 figures, final version accepted in Phys. Let
Hard thermal loops with a background plasma velocity
I consider the calculation of the two and three-point functions for QED at
finite temperature in the presence of a background plasma velocity. The final
expressions are consistent with Lorentz invariance, gauge invariance and
current conservation, pointing to a straightforward generalization of the hard
thermal loop formalism to this physical situation. I also give the resulting
expression for the effective action and identify the various terms.Comment: 11 pages, no figure
Plasmon interactions in the quark-gluon plasma
Yang-Mills theory at finite temperature is rewritten as a theory of plasmons
which provides a Hamiltonian framework for perturbation theory with resummation
of hard thermal loops.Comment: 12 pages, LaTeX, minor typos corrected, discussion adde
Non-topological solitons as nucleation sites for cosmological phase transitions
I consider quantum field theories that admit charged non-topological solitons
of the Q-ball type, and use the fact that in a first-order cosmological phase
transition, below the critical temperature, there is a value of the soliton
charge above which the soliton becomes unstable and expands, converting space
to the true vacuum, much like a critical bubble in the case of ordinary
tunneling. Using a simple model for the production rate of Q-balls through
charge accretion during a random walk out of equilibrium, I calculate the
probability for the formation of critical charge solitons and estimate the
amount of supercooling needed for the phase transition to be completed.Comment: 20 pages, 2 figures, some comments and references adde
Spin density wave dislocation in chromium probed by coherent x-ray diffraction
We report on the study of a magnetic dislocation in pure chromium. Coherent
x-ray diffraction profiles obtained on the incommensurate Spin Density Wave
(SDW) reflection are consistent with the presence of a dislocation of the
magnetic order, embedded at a few micrometers from the surface of the sample.
Beyond the specific case of magnetic dislocations in chromium, this work may
open up a new method for the study of magnetic defects embedded in the bulk.Comment: 8 pages, 7 figure
Aging dynamics of non-linear elastic interfaces: the Kardar-Parisi-Zhang equation
In this work, the out-of-equilibrium dynamics of the Kardar-Parisi-Zhang
equation in (1+1) dimensions is studied by means of numerical simulations,
focussing on the two-times evolution of an interface in the absence of any
disordered environment. This work shows that even in this simple case, a rich
aging behavior develops. A multiplicative aging scenario for the two-times
roughness of the system is observed, characterized by the same growth exponent
as in the stationary regime. The analysis permits the identification of the
relevant growing correlation length, accounting for the important scaling
variables in the system. The distribution function of the two-times roughness
is also computed and described in terms of a generalized scaling relation.
These results give good insight into the glassy dynamics of the important case
of a non-linear elastic line in a disordered medium.Comment: 14 pages, 6 figure
Damping Rates and Mean Free Paths of Soft Fermion Collective Excitations in a Hot Fermion-Gauge-Scalar Theory
We study the transport coefficients, damping rates and mean free paths of
soft fermion collective excitations in a hot fermion-gauge-scalar plasma with
the goal of understanding the main physical mechanisms that determine transport
of chirality in scenarios of non-local electroweak baryogenesis. The focus is
on identifying the different transport coefficients for the different branches
of soft collective excitations of the fermion spectrum. These branches
correspond to collective excitations with opposite ratios of chirality to
helicity and different dispersion relations. By combining results from the hard
thermal loop (HTL) resummation program with a novel mechanism of fermion
damping through heavy scalar decay, we obtain a robust description of the
different damping rates and mean free paths for the soft collective excitations
to leading order in HTL and lowest order in the Yukawa coupling. The space-time
evolution of wave packets of collective excitations unambiguously reveals the
respective mean free paths. We find that whereas both the gauge and scalar
contribution to the damping rates are different for the different branches, the
difference of mean free paths for both branches is mainly determined by the
decay of the heavy scalar into a hard fermion and a soft collective excitation.
We argue that these mechanisms are robust and are therefore relevant for
non-local scenarios of baryogenesis either in the Standard Model or extensions
thereof.Comment: REVTeX, 19 pages, 4 eps figures, published versio
- …
