672 research outputs found

    Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation

    Get PDF
    BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity

    Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

    Get PDF
    Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO₂ has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C

    In situ cleaning of diagnostic first mirrors: An experimental comparison between plasma and laser cleaning in ITER-relevant conditions

    Get PDF
    This paper presents an experimental comparison between the plasma cleaning and the laser cleaning techniques of diagnostic first mirrors (FMs). The re-deposition of contaminants sputtered from a tokamak first wall onto FMs could dramatically decrease their reflectance in an unacceptable way for the proper functioning of plasma diagnostic systems. Therefore, suitable in situ cleaning solutions will be required to recover the FMs reflectance in ITER. Currently, plasma cleaning and laser cleaning are considered the most promising solutions. In this work, a set of ITER-like rhodium mirrors contaminated with materials tailored to reproduce tokamak redeposits is employed to experimentally compare plasma and laser cleaning against different criteria (reflectance recovery, mirror integrity, time requirement). We show that the two techniques present different complementary features that can be exploited for the cleaning of ITER FMs. In particular, plasma cleaning ensures an excellent reflectance recovery in the case of compact contaminants, while laser cleaning is faster, gentler, and more effective in the case of porous contaminant. In addition, we demonstrate the potential benefits of a synergistic solution which combines plasma and laser cleaning to exploit the best features of each technique

    Phenomenological interpretation of internal erosion in granular soils from a discrete fluid-solid numerical model

    Get PDF
    Internal erosion in granular soils may involve different steps: the detachment of solid particles from the granular skeleton under the action of water seepage; the transport of the detached particles carried with the water flow in the pore space; and eventually, for some erosion processes, such as suffusion, the possible reattachment of some transported particles to the solid skeleton of the soil, acting as a filter. The first part of this paper is devoted to the description and interpretation of the first step about the particle detachment. The analysis is mainly based on direct numerical simulations performed with a fully coupled discrete element-lattice Boltzmann method. Dynamics of the solid granular phase is represented thanks to the discrete element method in which each solid particle is explicitly described, whereas dynamics of the interstitial water flow is solved with the lattice Boltzmann method. Interactions between the solid phase and the fluid phase are handled at the particle scale avoiding the introduction in the model of some phenomenological constituents to deal with fluid-solid interactions. Numerical modellings of hole erosion can be interpreted similarly to laboratory hole erosion tests where the erosion rate is linearly related to the hydraulic shear stress. Further investigations from the numerical results suggest that the erosion rate for hole erosion in granular soil, can also be interpreted as a function of the water flow power according to a power law. The latter interpretation is applied to experimental data from suffusion tests on a cohesionless soil and glass bead mixtures. Here again, if change of erosion rate due to filtration is discarded, erosion rate is correctly described by the water seepage power according to a power law. Finally, a simple phenomenological model is suggested to describe the whole suffusion process, based on the previous results, to describe the particle detachment, and completed to take also into account the transport and filtration phases. Predictions of this model are compared with experimental results from suffusion tests on glass bead mixtures

    A possible characterization of suffusion susceptibility independent of the hydraulic loading history?

    Get PDF
    Suffusion is a complex phenomenon which involves selective erosion of fine particles under the effect of seepage flow in the matrix of coarser particles. With the objective to characterize suffusion susceptibility, a series of downward seepage flow tests was realized with a triaxial erodimeter developed in our laboratory. Three different cohesionless soils were tested under controlled hydraulic gradient or under controlled flow rate. This study shows the significant effect of hydraulic loading history on the value of critical hydraulic gradient. Moreover, method characterizing the erosion susceptibility based on rate of erosion doesn’t lead to a unique characterization of suffusion process for different histories of hydraulic loading. The new analysis is based on energy expended by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. The results demonstrate that this approach is effective to characterize suffusion susceptibility for cohesionless soils

    Suffusion susceptibility characterization by triaxial erodimeter and statistical analysis

    Get PDF
    Suffusion process corresponds to the coupled processes of detachment-transport-filtration of the soil’s fine fraction within the voids between the coarse fraction. Because of the great length of earth structures and because of the heterogeneities of soils, it is very difficult to characterize the suffusion susceptibility of soils all along the earth structures. So, a statistical analysis can be performed in order to optimize the experimental campaign. By using a specific triaxial erodimeter, an experimental program was setup to study suffusion susceptibility of thirty two specimens. The suffusion susceptibility is determined by the erosion resistance index. Ten physical parameters are determined and a statistical analysis is performed in order to identify the main parameters for a correlation with erosion resistance index. The multivariate statistical analysis leads to an expression of the erosion resistance index as a function of eight physical parameters, and by distinguishing the gap-graded and widely-graded soils, another new correlation is obtained with five physical parameters
    • …
    corecore